• Title/Summary/Keyword: $\b{crystallinity}$

Search Result 147, Processing Time 0.029 seconds

Degradation Behavior of Hydroxyapatite with Different Crystallinity in Simulated Body Fluid Solution (의사체액에서 수산화아파타이트의 결정성에 따른 분해거동)

  • Jin, Hyeong-Ho;Kim, Dong-Hyun;Kim, Tae-Wan;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.347-351
    • /
    • 2011
  • Hydroxyapatite (HAp) powders with different crystallinities were synthesized at various calcination temperatures through the co-precipitation of $Ca(OH)_2$ and $H_3PO_4$. The degradation behavior of these HAp powders with different crystallinities was assessed in a simulated body fluid solution (SBF) for 8 weeks. Below $800^{\circ}C$, the powders were nonstochiometric HAp, and the single HAp phase was successfully synthesized at $800^{\circ}C$. The degree of crystallinity of the HAp powders increased with an increasing calcination temperature and varied in a range from 39.6% to 92.5%. In the low crystallinity HAp powders, the Ca and P ion concentrations of the SBF solution increased with an increasing soaking time, which indicated that the low crystallinity HAp degraded in the SBF solution. The mass of the HAp powders linearly decreased with respect to the soaking time, and the mass loss was higher at lower crystallinities. The mass loss ranged from 0.8% to 13.2% after 8 weeks. The crystallinity of the HAp powders increased with an increasing soaking time up to 4 weeks and then decreased because of HAp degradation. The pH of the SBF solution did not change much throughout the course of these experiments. These results suggested that the crystallinity of HAp can be used to control the degradation.

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.

Effect of deposition condition on the properties of diamond thin films synthesized by MWPCVD (MWPCVD에 의해 합성된 다이아몬드 박막 특성에 대한 증착조건의 영향)

  • Lee, B.S.;Shin, T.H.;Yuk, J.H.;Cho, G.S.;You, D.H.;Park, S.H.;Lee, N.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1696-1698
    • /
    • 1999
  • The methastable state diamond films have been deposited on Si substrates using MWPCVD. Effects of each experimental parameters of MWPCVD including $CH_4$ conentrations, Oxygen additions, Operating pressure, etc. on the growth rate and crystallinity were invesitigated. The best crystallinity of the film at 3% methane concentration addition of oxygen to the $CH_4-H_2O$ mixture gave an improved film crystallinity at 50% oxygen concentration. Upon increasing the operating pressure, the growth rate and crystallinity were increased simultaneously.

  • PDF

CONTROL OF HARDNESS OF OIL-WAX GELS BY A NOVEL BRANCHED WAX AND APPLICATION TO LIPSTICKS

  • Yoshida, K.;Shibata, M.;Ito, Y.;Nakamura, G.;Hosokawa, H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.469-479
    • /
    • 2003
  • A novel branched wax has been developed for the control of the hardness of oil-wax gels. Using this wax, glossier application and smoother texture but tough lipstick can be obtained. Oil-wax gels are oily solids composed of liquid and crystalline solid oils (waxes). They are widely used in various cosmetic products, especially lipsticks. The control of gel hardness is one of the most important techniques in improvement of the lipstick quality. Addition of small amounts of commercial branched paraffin wax (e.g. microcrystalline wax, b-PW) to n-paraffin wax (n-PW) has been commonly used to increase gel hardness. However, gel hardness is very sensitive to the quantity of b-PW and the gel obtained is not always hard enough for practical use. In this study we examined the relationship between the gel hardness and the properties of the wax crystal in the gel. We have found that, when b-PW is added to n-PW, the wax crystal size becomes smaller (hardening the gels) and its crystallinity is decreased (softening the gels) simultaneously. Considering this result, we have developed a novel branched wax, Bis(polyethylenyl)- tetramethyldisiloxane (named ESE). ESE molecules are composed of a central tetramethyldisiloxane unit (branch unit) with polyethylene units at both ends. The central unit may suppress crystal growth while the ends are expected to prevent a decrease in wax crystallinity during crystallization. When ESE is added to n-PW, the wax crystal obtained becomes smaller without decreasing in crystallinity; consequently, the gel hardness is dramatically increased. By using ESE, the total amount of wax in a lipstick can be decreased by 30% without spoiling the stick toughness, thereby achieving glossy application and smooth texture.

  • PDF

A Study on the Photoluminescence of Boron lon Implanted GaAs (Boron 이온이 주입된 GaAs의 열처리에 따른 발광특성에 관한 연구)

  • 최현태;손정식;배인호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.700-704
    • /
    • 1998
  • In this paper, the optical properties of boron ion implanted GaAs were investigated by photoluminescence(PL) measurements. The implantations were preformed at room temperature with the energy of 150 eV. The range of implanted dose was $10^{12}~10^{15} ions/cm^2$. The boron implanted samples were annealed between $450^{\circ}C$ and $800^{\circ}C$ for 20 minutes. The crystallinity of low dosed samples were increased with increasing annealing temperature up to $700^{\circ}C$ while that of the high dosed($10^{15} ions/cm^2$) was almost same. From the samples with dose of $10^{14}~10^{15} ions/cm^2$, two emission bands were observed at 1.438 eV (B1) and 1.459 eV (B2) after the thermal treatment. These emission bands seems to be attributed to the $B_{Ga}$-defect complex.

  • PDF

A Study on the Electrical Conduction in Insulation Material with High Voltage Treatment (고전계인가 고분자 절연재료의 전도현상에 관한 연구)

  • 임헌찬;정재희;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.56-60
    • /
    • 1994
  • In this study, Cuttent vs. Temperature characteristics of polyethylene with high-voltage treatment and crystallinity have been studied. The current curve( $I_{th}$) shows two peaks at 85 ($^{\circ}C$) and 50($^{\circ}C$), respectively. Trapping of carriers Proceeds during the high-field treatment, and it Is clear that 1th arises from the drift of carriers under the external voltage( $V_{b}$). From the results of TSC of BDPE and LDPE. It is realized that the traps are relation to the crystallinity.y.y.

  • PDF

Effects of Solution Concentration on the Structural and Magnetic Properties of Ni0.5Zn0.5Fe2O4 Ferrite Nanoparticles Prepared by Sol-gel

  • Yoo, B.S.;Chae, Y.G.;Kwon, Y.M.;Kim, D.H.;Lee, B.W.;Liu, Chunli
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.230-234
    • /
    • 2013
  • The $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticles about 30 nm were prepared using sol-gel method with metal nitrates dissolved in 2-methoxyathanol. The concentrations of the metal nitrates are adjusted from 0.1 to 0.75 M in order to study the influence on the structural and magnetic properties. The structure and morphology characterization revealed that the crystallinity was improved and the nanoparticle size was increased with the nutrition solution concentrations up to 0.5 M. Degraded crystallinity together with decreased nanoparticle size were observed for concentration of 0.75 M. The saturation magnetization at room temperature reached maximum at 0.5 M, which can be explained by considering the crystallinity and size effect.

Studies on the Sintering of the Cordierite Glass-ceramics (코디어라이트계 결정화 유리의 소결에 관한 연구)

  • 박용완;현부성
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.779-784
    • /
    • 1992
  • In producing cordierite glass-ceramics by sintering, following experiments were conducted in order to determine the optimum heat-treatment schedule for high-crystallinity and dense sintered body. The glass composition of 11.67MgO-29.46Al2O3-52.88SiO2-5P2O5-1B2O3 (wt%) was selected on the basis of the early experiment. The 3-step heat treatment schedule was determined by the results of DTA, Dilatometric measurement and high-temperature XRD, where the particle-size-controlled glass powder was used. The degree of densification and the crystallinity were evaluated by the measurement of the bulk density and X-ray scattering intensity. The specimen fired with the optimum conditions showed ${\alpha}$-cordierite phase, relative density ∼98%, crystallinity ∼92%, thermal expansion coefficient ∼30${\times}$10-7/$^{\circ}C$, dielectric constant ∼5.5 and resistivity ∼1.0${\times}$1012 {{{{ OMEGA }}cm, respectively.

  • PDF

Influence of sputtering parameter on the properties of silver-doped zinc oxide sputtered films

  • S. H. Jeong;Lee, S. B.;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.58-58
    • /
    • 2003
  • Silver doped ZnO (SZO) films were prepared by rf magnetron sputtering on glass substrates with extraordinary designed ZnO target. With the doping source for target, use AgNO$_3$ powder on a various rate (0, 2, and 4 wt.%). We investigated dependence of coating parameter such as dopant content in target and substrate temperature in the SZO films. The SZO films have a preferred orientation in the (002) direction. As amounts of the Ag dopant in the target were increased, the crystallinity and the transmittance and optical band gap were decreased. And the substrate temperature were increased, the crystallinity and the transmittance were increased. But the crystallinity and the transmittance of SZO films were retrograde at 200$^{\circ}C$. Upside facts were related with composition. In addition, the Oxygen K-edge features of the SZO films were investigated by using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Changes of optical band gap of the SZO films were explained compared with XRD, XPS and NEXAFS spectra.

  • PDF

Analysis of the effect of flow-induced crystallization on the stability of low-speed spinning using the linear stability method

  • Shin Dong Myeong;Lee Joo Sung;Jung Hyun Wook;Hyun Jae Chun
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2005
  • The stability of low-speed spinning process exhibiting spinline flow-induced crystallization (FIC) with no neck-like spinline deformation has been investigated using the method of linear stability analysis. Effects of various process conditions such as fluid viscoelasticity and the spinline cooling on the spinning stability have been found closely related to the development of the spinline crystallinity. It also has been found that the FIC makes the system less stable or more unstable than no FIC cases when the spinline crystallinity reaches its maximum possible value, whereas the FIC generally stabilizes the system if the crystallinity doesn't reach its maximum value on the spinline. It is believed that the destabilizing effect of the FIC on low-speed spinning when the crystallinity is fully developed on the spinline is due to the reduction of the real spinning length available for deformation on the spinline. On the other hand, the increased spinline tension caused by the FIC when the maximum crystallinity is not reached on the spinline and thus no reduction in the spinning length occurs, makes the sensitivity of spinline variables to external disturbances smaller and hence stabilizes the system. These linear stability results are consistent with the findings by nonlinear transient simulation, as first reported by Lee et al. (2005b).