• Title/Summary/Keyword: $\alpha$-amylase signal sequence

Search Result 19, Processing Time 0.036 seconds

Overproduction and High Level Secretion of Glucose Oxidase in Saccharomyces cerevisiae (Glucose Oxidase의 Saccharomyces cerevisiae에서의 대량생산 및 고효율 분비)

  • 홍성용;최희경;이영호;백운화;정준기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The overproduction and high level secretion of Glucose Oxidase (GOD) from A. niger in S. cerevisiae was carried out by cloning GOD gene. For this purpose, using two different strong promoters (ADH1 promoter, GAL10 promoter) and signal sequences (${alpha}$-MF signal sequence of S. cerevisiae and ${alpha}$-amylase signal sequence of A. oryzae) and GAL7- and GOD terminator, four expression vectors were constructed. All the expression vectors were transformed in S. cerevisiae 2805 using auxotroph method. By the flask culture, transformants of pGAL expression vector series containing GAL 10 promotor showed much higher GOD productivity than transformants of pADH expression vector series containing ADH1 promoter Transformants of pGALGO2 containing GAL10 promotor and ${alpha}$-amylase signal sequence has shown the best productivity of GOD ($GOD_{total}$: 10.3 unit/mL, $GOD_{ex}$: 8.7 unit/mL) at 115 hr. This value was three fold higher than that of pGALGO1 containing GAL 10 promotor and ${alpha}$-MF signal sequence, even if the same promotor was involved. Through the ${alpha}$-amylase signal sequence of A. oryzae, GOD was secreted much more than the case of ${alpha}$-MF signal sequence from S. cerevisiae. These results suggest that signal sequence may play a important roles in not only the secretion but also the overproduction of foreign protein. Secretion rate of GOD in pGALGO1 and pGALGO2 was 89% and 84%, respectively, Because of the overglycosylation in S. cerevisiae the molecular weight of recombinant GOD in S. cerevisiae was much larger (250 kDa) than that of nature GOD in A. niger (170 kDa).

  • PDF

Improvement of Production and Secretion of Heterologous \alpha-Amylase from Saccharomyces cerevisiae. (외래 알파아밀라제의 Saccharomyces cerevisiae에서의 생산과 분비효율의 증진)

  • Choi, Sung-Ho;Kim, Geun
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.36-41
    • /
    • 2003
  • In order to increase the production and secretion rate of mouse salivary $\alpha$-amylase from Saccharomyces cerevisiae, various experiments were attempted. A plasmid pCNNinv (AMY) was constructed by the substitution of ADCl promoter and native signal sequence of mouse salivary $\alpha$-amylase cDNA gene with PRBI promoter and yeast invertase leader sequence, which resulted in 25% increase in the production of $\alpha$-amylase in the culture medium. The respiratory deficient transformant carrying pCNNinv (AMY) were obtained by treating yeast cells with ethidium bromide, and the $\alpha$-amylase activities in the culture brothes of the respiratory-deficient transformants were 5-8 times higher than that of parental wild type strain. $\alpha$-Amylase activity was also increased 3 times when the 0.015% (w/v) of 2-mercaptoethanol was added to the culture medium.

Flow Cytometric Analysis of Human Lysozyme Production in Recombinant Saccharomyces cerevisiae

  • Peterson Marvin S.;Kim Myoung-Dong;Han Ki-Cheol;Kim Ji-Hyun;Seo Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.52-55
    • /
    • 2002
  • Flow cytometric techniques were used to investigate cell size, protein content and cell cycle behavior of recombinant Saccharomyces cerevisiae strains producing human lysozyme (HLZ). Two different signal sequences, the native yeast $MF\alpha1$ signal sequence and the rat $\alpha-amylase$ signal sequence, were used for secretion of HLZ. The strain containing the rat $\alpha-amylase$ signal sequence showed a higher level of internal lysozyme and lower specific growth rates. Flow cytometric analysis of the total protein content and cell size showed the strain harboring the native yeast signal sequence had a higher total protein content than the strain containing the rat $\alpha-amylase$ signal sequence. Cell cycle analysis indicated that the two lysozyme producing recombinant strains had an increased number of cells in the $G_2+M$ phase of the yeast cell cycle compared with the host strain SEY2102.

NaCl-dependent Amylase Gene From Badillus circulans F-2 Its Nucleotide Sequence (Bacillus circulans F-2의 NaCl 의존성 amylase 유전자의 DNA 염기배열 결정)

  • 김철호;권석태;타니구치하지메;마루야마요시하루
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.309-316
    • /
    • 1990
  • The sequence of a 1795 bp restriction fragment containing the B. circulans F-2 gene for NaC1- dependent $\alpha$-amylase (CI-amylase) is reported. The probable coding region of the gene is 1005 base pairs (335 amino acida) long. The NaC1-dependent $\alpha$-amylase (el-amy) sequence shows an open reading frame (ORF) with the translated molecular weight of about 38, 006, which correspond to a molecular weight of about 35, 000 (Mi). The gene is preceded by the sequence resembling promoter for the vegetative B, subtitis RNA polymerases. These are followed by the sequences resembling a B. subtilis ribosome binding site 5 nucleotides before the first codon of the gene. Homologous regions with other amylases were found. The N-terminal sequences of the mature proteins expressed in E. eoli were identical to the N-terminal sequences which are anaIysed.

  • PDF

Construction of Secretion Vectors Using the $\alpha$-amylase Signal Sequence of Bacillus subtilis NA64

  • Kim, Sung-Il;Lee, Se-Yong
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.74-81
    • /
    • 1996
  • Two secretion vectors, pUBA240 and pUB340 were constructed by using the promoter and secretory signal region of the .alpha.-amylase gene from an .alpha.-amylase hyperproducing strain, Bacillus subtilis NA64. In this secretion vector system, various restriction enzyme sites are located immediately after the proregion of the .alpha.-amylase gene for easy replacement of various foregn structural genes. To evaluate this secretion vectors, the .betha.-lactamase gene of pBR322 was used as a reporter gene. The expressed and biologically active .betha.-lactamase was secreted into the culture broth from B. subtilis LKS86 transformants harboring each .betha.-lactamase secreting plasmid, pUBAbla and pUBSble. In both cases, more than 92% of expressed .betha.- lactamases were located idn the culture medium. The amount of the secreted .betha.-lactamase was about 80% of the total secreted proteins in the culture medium.

  • PDF

Molecular Cloning and Determination of the Nucleotide Sequence of Raw Starch Digesting α-Amylase from Aspergillus awamori KT-11

  • Matsubara, Takayoshi;Ammar, Youssef Ben;Anindyawati, Trisanti;Yamamoto, Satoru;Ito, Kazuo;Iizuka, Masaru;Minamiura, Noshi
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.429-438
    • /
    • 2004
  • Complementary DNAs encoding $\alpha$-amylases (Amyl I, Amyl III) and glucoamylase (GA I) were cloned from Aspergillus awamori KT-11 and their nucleotide sequences were determined. The sequence of Amyl III that was a raw starch digesting $\alpha$-amylase was found to consist of a 1,902 bp open reading frame encoding 634 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. On the other hand, the sequence of Amyl I, which cannot act on raw starch, consisted of a 1,500 bp ORF encoding 499 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. The sequence of GA I consisted of a 1,920 bp ORF that encoded 639 amino acids. The signal peptide was composed of 24 amino acids. The amino acid sequence of Amyl III from the N-terminus to the amino acid number 499 showed 63.3% homology with Amyl I. However, the amino acid sequence from the amino acid number 501 to C-terminus, including the raw-starch-affinity site and the TS region rich in threonine and serine, showed 66.9% homology with GA I.

Construction of a Secretory Expression Vector Producing an $\alpha$-Amylase of Yeast, Schwanniomyces occidentalis in Saccharomyces

  • Shin, Dong-Jun;Park, Jong-Chun;Lee, Hwanghee-Blaise;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.625-630
    • /
    • 1998
  • Using a modified yeast secretory expression vector, $\alpha$-amylase of Schwanniomyces occidentalis was produced from Saccharomyces cerevisiae. The expression vector contains the a-amylase gene (AMY) harboring its own promoter without the regulatory region and the adenine base at the -3 position from the ATG start codon, its own signal sequence, CYC1 transcription terminator, and SV40 enhancer. The expressed $\alpha$-amylase activity from cells carrying the plasmid was approximately 26 times higher than that from the cells harboring an unmodified plasmid. When Saccharomyces diastaticus was transformed with this modified vector, a 2.5 times higher level of amylolytic activity than that from Sch. occidentalis was observed.

  • PDF

Screening and Characterization of Secretion Signals from Lactococcus lactis ssp. cremoris LM0230

  • Jeong, Do-Won;Choi, Youn-Chul;Lee, Jung-Min;Seo, Jung-Min;Kim, Jeong-Hwan;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1052-1056
    • /
    • 2004
  • A secretion signal sequence-selection vector (pGS40) was constructed based on an $\alpha$-amylase gene lacking a secretion signal and employed for selecting secretion signals from Lactococcus lactis ssp. cremoris LM0230 chromosomal DNA. Six fragments were identified based on their ability to restore $\alpha$-amylase secretion in E. coli, and among these, a fragment, S405, conferred the highest secretion activity (84%) in E. coli. Meanwhile, S407, which conferred poor secretion activity in E. coli, was quite active in L. lactis. The results suggested that the efficiency of a secretion signal depended on the host. All six fragments had an open reading frame (ORF) fused to the reporter gene, and the potential Shine-Dalgamo (SD) sequence and putative promoter sequences were located upstream of the ORF. Deduced amino acid sequences from the six fragments did not show any homology with known secretion signals. However, they contained three distinguished structural features and cleavage sites, commonly found among typical secretion signals. The characterized secretion signals could be useful for the construction of food-grade secretion vectors and gene expression in LAB.

Sequencing of the RSDA Gene Encoding Raw Starch-Digesting $\alpha$-Amylase of Bacillus circulans F-2: Identification of Possible Two Domains for Raw Substrate-Adsorption and Substrate-Hydrolysis

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.56-65
    • /
    • 1992
  • The complete nucleotide sequence of the Bacillus circulans F-2 RSDA gene, coding for raw starch digesting a-amylase (RSDA), has been determined. The RSDA structure gene consists of an open reading frame of 2508 bp. Six bp upstream of the translational start codon of the RSDA is a typical gram-positive Shine-Dalgarno sequence and the RSDA encodes a preprotein of 836 amino acids with an Mr of 96, 727. The gene was expressed from its own regulatory region in E. coli and two putative consensus promoter sequences were identified upstream of a ribosome binding site and an ATG start codon. Confirmation of the nucleotide sequence was obtained and the signal peptide cleavage site was identified by comparing the predicted amino acid sequence with that derived by N-terminal analysis of the purified RSDA. The deduced N-terminal region of the RSDA conforms to the general pattern for the signal peptides of secreted prokaryotic proteins. The complete amino acid sequence was deduced and homology with other enzymes was compared. The results suggested that the Thr-Ser-rich hinge region and the non-catalytic domain are necessary for efficient adsorption onto raw substrates, and the catalytic domain (60 kDa) is necessary for the hydrolysis of substrates, as suggested in previous studies (8, 9).

  • PDF

Expression of Thermostable $\alpha$-Glucosidase from Thermus caldophilus GK24 in Recombinant Saccharomyces cerevisiae

  • Choi, Jae-Youl;Ahn, Jung-Oh;Kim, Sun-Il;Shin, Hyun-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.2000-2003
    • /
    • 2006
  • A gene (GenBank AF096282) coding for a $\alpha$-glucosidase (TcaAG, EC 3.2.1.20) from Thermus caldophilus GK24 was expressed in Saccharomyces cerevisiae, a generally recognized as safe (GRAS) host. The thermostable $\alpha$-glucosidase was produced inside of the GRAS host at 0.04 unit/mg-dry cell by the constitutively expressing ADH1 promoter and at 1.2 unit/mg-dry cell by the inductively expressing GALl0 promoter, respectively. No $\alpha$-glucosidase activities were found in the medium when the MF-alpha signal sequence from S. cerevisiae or $\alpha$-amylase signal sequence from Aspergillus oryzae were fused before the $\alpha$-glucosidase gene for the secretion.