• Title/Summary/Keyword: $\alpha$-Carleson measure

Search Result 2, Processing Time 0.018 seconds

THE TOEPLITZ OPERATOR INDUCED BY AN R-LATTICE

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.491-499
    • /
    • 2012
  • The hyperbolic metric is invariant under the action of M$\ddot{o}$bius maps and unbounded. For 0 < $r$ < 1, there is an r-lattice in the Bergman metric. Using this r-lattice, we get the measure ${\mu}_r$ and the Toeplitz operator $T^{\alpha}_{\mu}_r$ and we prove that $T^{\alpha}_{\mu}_r$ is bounded and $T^{\alpha}_{\mu}_r$ is compact under some condition.