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A PROBLEM FOR ANALYTIC FUNCTIONS OF
BOUNDED AND VANISHING MEAN OSCILLATION

Hast WULAN

ABSTRACT. In this note we consider some characterizations of an-
alytic functions of bounded and vanishing mean oscillation on the
unit disk in C and answer a question about them in the negative.

1. Introduction

Let D = {z : |z|] < 1} be the unit disk in the complex plane, z =
z + iy, and denote by dzdy the usual area measure on D. For w € D,
let the M&bius transformation ¢,, : D — D be defined by

w—z

‘Pw(z) = w € D.

1-wz’

For 0 <r < 1,let A(w,r) = {z € D: |pw(z)| < r} be the pseudohyper-
bolic disk with center w and radius r. The space BMOA (”Bounded
Mean Oscillation”, see [1]) is the set of all analytic functions on D for
which || fllBMoa < 00, where

27 1/2
W fllBMoa = sup (_/(; |7 (pw(e®)) — f(w)|2d0) :

Contained in BMOA is the subspace VMOA (” Vanishing Mean Oscil-
lation”), the set of all analytic functions f on D for which

) 27 " 0
Jim [ 1f(eu(e) - F)Pas <o,
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It is well-known that for a function f analytic on D we have (see [3])

(11) fe€eBMOA = 2161% /./D I/ (2)12(1 = |pw(2)})dedy < 0o

and (see [5])

(12) feVMOA« lm_ / /D 172 = [pu(2)2)dady = 0.
The Bloch space B is the set of all analytic functions f on D for which

| fllB8 = sup,ep |f'(2)](1 — |2|?) < oo, and the little Bloch space By is

contained in B for which limy,|_,1_ |f'(2)|(1—|2]2) = 0. For 0 < p < o0
and 1 < 7 < oo, we know that (see [6])

feB e sup / / PP = 2P)P2(1 — |pu(2)?)dzdy < oo
weD D
and
seBoe tim ([ 1FGIPO~ 120 - [pu(a) Pydsdy =o

The Bloch space B and the space BMOA share many analogous prop-
erties, as do the little Bloch space By and the space V M OA. Motivated
by these facts and the observation of the equivalents (1.1) and (1.2) for
BMOA and VMOA, respectively, Stroethoff asked in [6] the following:

Question. Let f be an analytic function on D and 0 < p < 00. Are
the following statements true?

f € BMOA <> sup / / £ (2P~ [22)P~2(1 — i (2)]P)dedy < oo.
weD D

f€VMOA <= 1lim / / £ (2)P(1=|2[2)P~2(1=|pw () [2)dady = 0.
f’w[—)l— D .

Choa and Miao settled the question above in the negative, respectivly,
that is:
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THEOREM A ([2],[4]).

(i) If0 < p < 2, then there exists an analytic function f € BMOA
such that

sup ([ 1FGIPOL= 1P 20 - fpule)P)dody = oo

(i) If0 < p < 2, then there exists an analytic function f € VMOA
such that

Jlim // F(2P( = [2P)P2(1  pu(2))dedy # 0.

w|j—1—

Moreover, Stroethoff proved in [6] the following result:

THEOREM B. Let f be an analytic function f on D and 0 < p <
00,0 <0 < 1. Then

(i) supwep [fp If'(2)IP(L ~ [2[2)P72(L — |pw(2)|?)7dzdy < 00 =
f € BMOA,

(ii) limpyoa [fp IF'(2)PQ - [2[2)P~2(1 - I<Pw(2)|2)"dwdy =0=
f € VMOA.

However, Theorem B gave only sufficient conditions for an analytic
function f to belong to the spaces BMOA and VMQOA. A natural
question then arises: for 0 < p < 00,0 < 0 < 1, are the conditions
(i) and (ii) in Theorem B necessary for f to belong to BMOA and
VMOA, respectively? In this paper we answer this question in the
negative. Our result is the following:

THEOREM. Let 0 <p<ooand0 <o < 1.
(A) There exists an analytic function f € BMOA such that

vet // |F/(2)IP(1 = 12)P~2(1 ~ lpu(2) P)° dedy = oo.
weDJJD
(B) There exists an analytic function f € VMOA such that

Jim [ 10 PP - w2 ) dedy # 0
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2. Lemma

Before embarking into the proof of Theorem, let us state the defini-
tion of a-Carleson measure and its some equivalent conditions, which
will be used in our proof.

For a subarc I C 8D, where 0D is the boundary of D, let

S(I)={zeD:1-|I|<|2| < 1,2/|2| € I}.

If |I| > 1 then we put S(I) = D. For 0 < a < 0o, we say that a positive
measure y defined on D is an a-Carleson measure if

sup{u(S(I))/|I|*: I C 8D} < oo.

If o = 1, we get the classical Carleson measure (see [3]).

LEMMA [7]. Let p be a positive measure and a > 1. Then the
following statements are equivalent:

(a) p is an a-Carleson measure.
(b) for 0 < r <1, there exists constant C such that

wA(w,r)) < C(1 - |w|)* w e D.

o (55 w00 <

REMARK. Lemma above is not true for the case 0 < a < 1.

()

3. The proof of Theorem

(A) For 0 < p < 2, by (i) in Theorem A there exsits f € BMOA
such that

(3.1) sup / If'(2)|IP(Q — |2>)P~2(1 — |<pw(z)|2)d.7:dy = 00,
weD D
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it follows that for 0 < o < 1
62 s [[ 7P 1P = fpule) 7 dady = oo
By Holder’s inequality, for 0 < p < 2 and 0 < 0 < 1 we get

/ [ 11@Pa - P2 - lou(2)P)dady

< (/D ' (2)2(1 ~ I</)w(21)Iz)"df':dy)p/2 x

([ =172 - lota) ) F daay o

- (/D |f'(2)]2(1 - lcpw(z)lz)adxdy)p/z )

(3.3)
1—|z 2)-2+ 55 ﬂ -%Ed:cd (2—’))/2.
(//‘ =07 () ”)

Since the differential form (1 — |z|2)_2+271%dxdy is %’—_%-Carleson mea-
sure and 27__% > 1, by Lemma we have

2\ =
(3.4) sup/ (1-z| )"2*“—L (|1 |w||2) dxdy = M # 0.

Therefore, by (3.3) and (3.4) we obtain

/ [ 17— #7720 - fpul2) P ddy

p/2
' ! 201 _ 2\o
s <ut (sw [[ 1F@PA- @)
Thus, by (3.1) and (3.5) we have

(3.6) sup [ 17/ - lpu(2) ) dody = oo
weD D

297



Hasi Wulan
By (3.2) and (3.6) Theorem is valid for cases 0 <p<2and 0 <o <1

Now we consider the cases 2 < p<ooand 0 <o < 1. Let ¢ = l-I-%
By (i) in Theorem A there exsits g € BMOA such that

e / lg'(2)19(1 = |21)472(1 = |w(2)[*)dady = co.
weD D
By Holder’s inequality we have

o0 = sup / 9 (1L~ 2)H1  u(2)P)dady

= sup/ 19'(2)["F 7 (1 = [212)7 (L — |pu(2)?) 5+ P dedy

< sup ( JL g @rra— e pue) )"dxdy)l/px

(37) (p—-1)/p
X sup ( JLa-prra- ww(z)l?)%i—‘idzdy) |

weD
Since g € BMOA C B, we set sup,¢p |¢'(2)|(1 — |2|?) = K. Hence

= sup / / 19'(2)19(1 = |212)72(1 - |pu(2) [P)dzdy

< sup (/ 16/ (2)FP(1L = [2)P(1 = |ou(2)] )”dzdy)l/px

< sup ([ 1= 17201 pul ) oy ool

weD

1/p
<& sup [ 0 @Pa- P20~ lou@Prdsdy)
weD D

|w|2 p_a (r—1)/p
— 2|22 R
xs:%(// a- kP (gis) d“’y)

(3.8)

1/p
<K' sup ( J[w@ra-epra- |sow<z>|2>"d:cdy)
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)—2+

since (1 — |z|? Tdzdy is E=¢ -Carleson measure and 2=2 > 1.

Therefore, from (3.8) we know that there exsits g € BMOA such that
sup [ [ 1P - 122)7 21 ~ lpu(2))" dady = o0
weDJJD

for 2 < p < 00,0 < 0 < 1. This shows that (A) holds for all cases.
Similar to the proof of (A), we can get (B) by (ii) in Theorem A.
Thus the proof of Theorem is complete.
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