• Title/Summary/Keyword: $\Ca^{2+}$-ATPase

Search Result 220, Processing Time 0.027 seconds

The Effect of Higenamine on the Calcium Transport of Cardiac Sarcoplasmic Reticulum (Higenamine이 심근 Sarcoplasmic Reticulum의 칼슘운반에 미치는 영향에 관한 연구)

  • Kim, Joo-Hyun;Lee, Yung-Kyoon;Kim, Hae-Won;Kim, Myung-Suk;Park, Chan-Woong;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 1982
  • Higenamine(dl-demethylcoclaurine, dl-1-(4-hydroxybenzyl)-6,7-dihydroxy-1,2,3,4-tetrah-ydroisoquinoline hydrochloride), which has recently been isolated from Aconite root by Drs. Kosuge and Yokota, has known to be the main cardiotonic component of the Aconite root. The present study was undertaken to investigate the effects of Higenamine on the calcium binding and release and ATPase activity of fragmented cardiac sarcoplasmic reticulum under in vitro condition. The calcium binding and release of sarcoplasmic reticulum were measured by using the double-beam spectrophotometer and the calcium sensitive dye, murexide. In the presence of $10^{-4}{\sim}5{\times}10^{-3}M$ of Higenamine, the maximal calcium binding and the initial binding rate of porcine cardiac sarcoplasmic reticulum were inhibited dose dependently by up to 43%. However, the calcium release from cardiac sarcoplasmic reticulum, which was loaded with $Ca^{++}(50{\mu}M)$, was stimulated in dose dependent manner. When incubated in the medium of 20 mM Tris-maleate(pH 7.0), 100 mM KCl, 10 mM $MgCl_2,\;0.05mM\;CaCl_2\;and\;0.014{\sim}1\;mM\;Tris-ATP\;at\;30^{\circ}C$ in the presence of Higenamine $(10^{-4}{\sim}5{\times}10^{-3}M)$, both $Ca^{++}-and\;Mg^{++}-ATPase$ of sarcoplasmic reticulum were inhibited non-competitively by Higenamine and values of $K_i$ were 4.896 mM and 6.875 mM respectively. It is suggested from the above findings that the cardiotonic effects of Higenamine might be partially explained by the inhibition of calcium binding and the stimulation of calcium release from the sarcoplasimic reticulum which may increase the free intracellular calcium that is available in the contraction of the cardiac muscle fiber.

  • PDF

Induction of Pacemaker Currents by DA-9701, a Prokinetic Agent, in Interstitial Cells of Cajal from Murine Small Intestine

  • Choi, Seok;Choi, Jeong June;Jun, Jae Yeoul;Koh, Jae Woong;Kim, Sang Hun;Kim, Dong Hee;Pyo, Myoung-Yun;Choi, Sangzin;Son, Jin Pub;Lee, Inki;Son, Miwon;Jin, Mirim
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The interstitial cells of Cajal (ICC) are pacemaking cells required for gastrointestinal motility. The possibility of whether DA-9701, a novel prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber, modulates pacemaker activities in the ICC was tested using the whole cell patch clamp technique. DA-9701 produced membrane depolarization and increased tonic inward pacemaker currents in the voltage-clamp mode. The application of flufenamic acid, a non-selective cation channel blocker, but not niflumic acid, abolished the generation of pacemaker currents induced by DA-9701. Pretreatment with a $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum, abolished the generation of pacemaker currents. In addition, the tonic inward currents were inhibited by U-73122, an active phospholipase C inhibitor, but not by $GDP-{\beta}-S$, which permanently binds G-binding proteins. Furthermore, the protein kinase C inhibitors, chelerythrine and calphostin C, did not block the DA-9701-induced pacemaker currents. These results suggest that DA-9701 might affect gastrointestinal motility by the modulation of pacemaker activity in the ICC, and the activation is associated with the non-selective cationic channels via external $Ca^{2+}$ influx, phospholipase C activation, and $Ca^{2+}$ release from internal storage in a G protein-independent and protein kinase C-independent manner.

Effect of Doxorubicin on Catecholamine Release in the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Song-Hoon;Seoh, Yoo-Seung;Lee, Eun-Sook;Kim, Il-Hwan;Jo, Seong-Ho;Hong, Soon-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.215-223
    • /
    • 2002
  • The present study was undertaken to investigate the effect of doxorubicin (DX) on secretion of catecholamines (CA) evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. DX $(10^{-7}{\sim}10^{-6}\;M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition of CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M).$ However, lower dose of DX did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M),$ but its higher doses depressed time-dependently CA secretion evoked by high $K^+.$ DX itself did also fail to affect basal CA output. In adrenal glands loaded with DX $(3{\times}10^{-7}\;M),$ CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were time-dependently inhibited. Furthermore, daunorubicin $(3{\times}10^{-7}\;M),$ given into the adrenal gland for 60 min, attenuated CA secretory responses evoked by ACh, high $K^+,$ DMPP and McN-A-343. Taken together, these results suggest that DX causes relatively dose- and time-dependent inhibition of CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland. However, lower dose of DX did not affect CA secretion by high $K^+,$ and higher doses of DX reduced time-dependently CA secretion of high $K^+.$ It is thought that these effects of DX may be mediated by inhibiting both influx of extracellular calcium into the rat adrenomedullary chromaffin cells and intracelluar calcium release from the cytoplasmic store. Also, there was no difference in the mode of action between DX and daunorubicin in rat adrenomedullary CA secretion.

Studies on Transport Mechanisms of Turtle Bladder I . Epithelium of Urinary Bladder (Turtle bladder의 수송기작(輸送機作)에 관한 연구 : I. 방광(膀胱)의 상피조직(上皮組織))

  • Jeon, Jin-Seok
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.119-137
    • /
    • 1989
  • It has been shown in this and earlier investigation that the turtle bladder mucosa has three main cell types on their mucosal surface. They are the granular cells, ${\alpha}$ CA cells, and ${\beta}$ CA cells. The three major transport mechanisms that occurs in the turtle bladder are sodium reabsorption, proton secretion, and bicarbonate secretion. In the present work the trans-port mechanisms by bladder epithelial cells of freshwater turtle, Pseudemys scripta, are summarized as follows. 1. The granular cells play an important role in sodium transport, while the ${\alpha}$ and ${\beta}$ CA cells do not appear to play a determining role in sodium transport. 2. It appears that the active sodium transport in the granular cells occurs in two-step process, implying that first, sodium diffuses into the cells, followed by an energy-dependent efflux step, which is catalyzed by the ouabain-sensitive Na-K ATPase. 3. The ${\alpha}$ type of CA cells are responsible for the proton secretion using the proton pump on the apical plasma membrane, while the ${\beta}$ type of CA cells are believed to be responsible for bicarbonate secretion. 4. When looked at under freeze-fracture electron microscopy, the apical plasma membrane of ${\alpha}$ cells have a characteristic population of rod-shaped intramembranous particles which are believed to be components of the proton pumps. Conversely, ${\beta}$ type of CA cells show rod-shaped particles in their basolateral plasma membranes, which is consistent with the proton absorptive, bicarbonate secretory mechanism. 5. In the turtle bladder, the ${\alpha}$ and ${\beta}$ type of cells are believed to be both responsible for proton transport, but in opposite directions.

  • PDF

Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Ko, Woo-Seok;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.147-160
    • /
    • 2008
  • The present study was designed to examine effects of polyphenolic compounds isolated from red wine (PCRW) on the release of catecholamines (CA) from the isolated perfused model of the rat adrenal medulla, and to clarify its mechanism of action. PCRW (20${\sim}$180 ${\mu}$g/mL), given into an adrenal vein for 90 min, caused inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}$M) in dose- and time-dependent fashion. PCRW itself did not affect basal CA secretion (data not shown). Following the perfusion of PCRW (60 ${\mu}$g/mL), the secretory responses of CA evoked by Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}$M), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}$M) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}$M) were also markedly blocked, respectively. Interestingly, in the simultaneous presence of PCRW (60 ${\mu}$g/mL) and L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}$M), the inhibitory responses of PCRW on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid were recovered to considerable level of the corresponding control release compared with those effects of PCRW-treatment alone. Practically, the amount of NO released from adrenal medulla after loading of PCRW (180 ${\mu}$g/mL) was significantly increased in comparison to the corresponding basal released level. Collectively, these results obtained here demonstrate that PCRW inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal gland of the normotensive rats. It seems that this inhibitory effect of PCRW is mediated by blocking the influx of both ions through $Na^+$ and $Ca^+{2$} channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are due at least partly to the increased NO production through the activation of nitric oxide synthase. Based on these data, it is also thought that PCRW may be beneficial to prevent or alleviate the cardiovascular diseases, such as hypertension and angina pectoris.

Involvement of Thromboxane $A_2$ in the Modulation of Pacemaker Activity of Interstitial Cells of Cajal of Mouse Intestine

  • Kim, Jin-Ho;Choe, Soo-Jin;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • Although many studies show that thromboxane $A_2\;(TXA_2)$ has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of $TXA_2$ on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by $TXA_2$ in ICC with whole cell patch-clamp technique. Externally applied $TXA_2\;(5{\mu}M)$ produced membrane depolarization in current-clamp mode and increased tonic inward pacemaker currents in voltage-clamp mode. The tonic inward currents by $TXA_2$ were inhibited by intracellular application of GDP-${\beta}$-S. The pretreatment of ICC with $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker currents and suppressed the $TXA_2$-induced tonic inward currents. However, chelerythrine or calphostin C, protein kinase C inhibitors, did not block the $TXA_2$-induced effects on pacemaker currents. These results suggest that $TXA_2$ can regulate intestinal motility through the modulation of ICC pacemaker activities. This modulation of pacemaker activities by $TXA_2$ may occur by the activation of G protein and PKC independent pathway via extra and intracellular $Ca^{2+}$ modulation.

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Lee, Seog-Ki;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2013
  • The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.

Effects of Vanadate on the Calcium Flux of Cardiac Muscle (Vanadate가 심근막을 통한 $Ca^{++}$의 유입 및 유출에 미치는 영향)

  • Park, Young-Shick;Ahn, Duck-Sun;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.20 no.2
    • /
    • pp.175-183
    • /
    • 1986
  • Since it was proposed that vanadate may be an ‘ideal endogenous regulator of the $Na^+,\;K^+-ATPase$ activity (Cantley et at, 1979), vanadate has been a subject of intensive research and a variety of its physiological effects have been described (Nechay, 1984). In isolated guinea pig heart muscle vanadate shows a positive inotropic effect on ventricular muscle, while it induces a negative inotropic effect on atrial muscle. But its underlying mechanism has not been elucidated so far. Therefore, in this study the flux rates of calcium ion into and from guinea pig heart muscle were measured to throw some light on the underlying mechanism, because those rates have been known to be closely related to the cardiac contractility and the results are summarized as follows: 1) Calcium efflux rates from the intracellular $Ca^{++}$ pool (compartment 4) of both guinea pig left atrium and right ventricle were significantly reduced by vanadate and their pool sizes were significantly increased by vanadate. 2) The magnitude of calcium influx into left atrium was reduced by vanadate, While the magnitude of calcium influx into right ventricle was not affected by vanadate. From these results, it may be concluded that the positive inotropic effect of vanadate on the ventricular muscle was due to a reduced efflux rate of calcium ion and its negative inotropic effect on atrial muscle was resulted from a reduced influx of calcium ion.

  • PDF

Influence of Nicorandil on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Koh, Young-Youp;Lee, Eun-Sook;No, Hae-Jeong;Woo, Seong-Chang;Chung, Joong-Wha;Seoh, Yoo-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.97-106
    • /
    • 2007
  • The present study was attempted to investigate the effect of nicorandil, which is an ATP-sensitive potassium ($K_{ATP}$) channel opener, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of nicorandil ($0.3{\sim}3.0mM$) into an adrenal vein for 90 min produced relatively dose-and time-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $k^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, $100{\mu}M$ for 2 min), McN-A-343 (a selective muscarinic $M_1$ receptor agonist, $100{\mu}M$ for 4 min), Bay-K-8644 (an activator of L-type dihydropyridine $Ca^{2+}$ channels, $10{\mu}M$ for 4 min) and cyclopiazonic acid (an activator of cytoplasmic $Ca^{2+}$-ATPase, $10{\mu}M$ for 4 min). In adrenal glands simultaneously preloaded with nicorandil (1.0 mM) and glibenclamide (a nonspecific $K_{ATP}$-channel blocker, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of nicorandil-treatment only. Taken together, the present study demonstrates that nicorandil inhibits the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this inhibitory effect of nicorandil may be mediated by inhibiting both $Ca^{2+}$ influx and the $Ca^{2+}$ release from intracellular store through activation of $K_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that nicorandil-sensitive $K_{ATP}$ channels may play an inhibitory role in the regulation of the rat adrenomedullary CA secretion.