• Title/Summary/Keyword: $[^{14}C]$bensulfuron-methyl

Search Result 8, Processing Time 0.023 seconds

Effect of Mineral Nutrients and Mixed Herbicides on the Absorption and Translocation of Bensulfuron-methyl in Rice (벼에 있어서 bensulfuron-methyl의 흡수(吸收) 이행(移行)에 미치는 무기영양분(無機營養分)과 혼합제초제(混合除草劑)의 영향(影響))

  • Chun, Jae-Chul;Han, Kang-Wan
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.1
    • /
    • pp.60-65
    • /
    • 1994
  • Absorption and translocation of bensulfuron-methyl {methyl 2[[[[[(4,6-dimethoxy-2-pyrimidinyl) amino]carbonyl]amino]sulfonyl]methyl]benzoate} in rice (Oryza sativa L.) as affected by mineral nutrients and mixed herbicides were determined using the $^{14}C-labeled$ herbicide in culture solution. Absorption of $^{14}C-bensulfuron-methyl$ by the root decreased with increasing concentration of bensulfuron-methyl. However, increase in the application concentration did not affect movement of the $^{14}C$ to the shoot. There was no difference in total amount of $^{14}C-bensulfuron-methyl$ taken up between absorption periods of 12 and 48 hours, whereas $^{14}C-bensulfuron-methyl$ translocated to the shoot increased with increasing the absorption period. When bensulfuron-methyl mixtures were applied, butachlor [N-(butoxymethyl)-2-chloro-N-(2',6'-diethylphenyl)acetamide] did not affect absorption and translocation of $^{14}C-bensulfuron-methyl$. However, quinclorac (3,7-dichloro-8-quinoline carboxylic acid) mixed at a high concentration resulted in decrease in absorption and translocation of $^{14}C-bensulfuron-methyl$. Nutritional disorder such as deficient or excess supply of mineral nutrients caused to inhibit absorption of $^{14}C-bensulfuron-methyl$. The greatest decrease and delay of $^{14}C-bensulfuron-methyl$ absorption and/or translocation occurred in N-deficient and S-excess supply conditions.

  • PDF

Fate of the herbicide bensulfuron-methyl in a soil/rice plant microecosystem (벼 재배 microecosystem 내에서 제초제 bensulfuron-methyl의 행적)

  • Lee, Jae-Koo;Fuhr, F.;Kwon, Jeong-Wook;Ahn, Ki-Chang;Park, Ju-Hyoung;Lee, Yong-Pil
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In order to elucidate the behavior of bensulfuron-methyl, a sulfonylurea herbicide, in a soil/plant microecosystem, rice plants (Oryza sativa L.) were grown for 12 weeks in the specially made stainless steel pots (17cm I.D. $\times$ 10cm H.) containing two different paddy soils treated with fresh and 13-week-aged residues of [phenyl-$^{14}C$]bensulfuron-methyl, respectively. During the aging period, the mineralization to $^{14}CO_2$ from soil A (OM, 3.59%; CEC, 7.65 $cmol^+\;kg^{-1}$; texture, sandy clay loam) and B (OM, 1.62%; CEC, 4.51 $cmol^+\;kg^{-1}$; texture, sandy loam) amounted to 6.79 and 10.15% of the originally applied $[^{14}C]$bensulfuron-methyl, respectively. The amounts of $^{14}CO_2$ evolved from the soils with fresh residues were higher than those from the soils with aged residues. At harvest after 12-week growing, $^{14}C$-radioactivity absorbed and translocated into rice plants from soils A and B containing fresh residues of bensulfuron-methyl was 1.53 and 4.40%, while 4.04 and 6.37% in the two soils containing aged residues, respectively. Irrespective of aging and soil type, the $^{14}C$-radioactivity remaining in soil ranged from 80.41 to 98.87% of the originally applied $[^{14}C]$bensulfuron-methyl. The solvent extractability of tile soils was $39.25\sim70.39%$, showing the big differences among the treatments. Most of the nonextractable soil-bound residues of $[^{14}C]$bensulfuron-methyl were incorporated into the fulvic acid fraction$(61.32\sim76.45%)$. Comparing the microbial activity of the soils with rice plants grown with that of the soils without them, the former was $1.6\sim3.0$ times higher than the latter. However, it did not correlate with the $^{14}CO_2$ evolution.

Physiological Changes of Eleocharis Kuroguwai During Period of Growth Inhibition Caused by Bensulfuron-methyl (Bensulfuron-methyl처리(處理) 후 올방개 생육억제기간(生育抑制期間) 중의 생리적(生理的) 변화(變化))

  • Chun, J.C.;Shin, H.S.
    • Korean Journal of Weed Science
    • /
    • v.14 no.3
    • /
    • pp.171-175
    • /
    • 1994
  • Physiological changes in Eleocharis kuroguwai Ohwi as affected by bensulfuron-methyl {Methyl 2-[[[[[(4, 6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino] sulfonyl]methyl]benzoate} was determined to relate the characteristics with regrowth behavior. There were no changes in relative growth rate(RGR) during the period of growth cessation after application of bensulfuron-methyl. RGR's of the growth ceseased plants caused at 39 and 51 g/ha began to increase in between 25 and 30 days after application (DAA) and between 30 and 35 DAA, respectively. In untreated plant tuber carbohydrate rapidly decreased right after emergence and almost consumed within 40 days. There was no carbohydrate consumption during the period of growth cessation in bensulfuron-methyl-applied plant, but the content started to rapidly decrease with regrowth. Tuber viability lasted for 30 days in untreated plant, while tubers were viable for 60 and 70 days after application of bensulfuron-methyl at 39 and 51 g/ha, respectively. During the period of growth cessation the plants kept minimum respiration and photosynthesis, but with regrowth respiration and photosynthesis were resumed and rapidly increased.

  • PDF

Differential Absorption and Translocation of Bensulfuron-methyl Between Selected Rice Cultivars (Bensulfuron-methyl 처리(處理)에 따른 내성선발(耐性選拔) 수도품종(水稻品種)의 흡수(吸收) 및 이행차이(移行差異))

  • Guh, J.O.;Pyon, J.Y.;Ishizuka, K.
    • Korean Journal of Weed Science
    • /
    • v.8 no.1
    • /
    • pp.45-52
    • /
    • 1988
  • A serial study on differential response in absorption and translocation of $^{14}C$-bensulfuron-methyl was conducted by use of a group of selected rice cultivars as the tolerant or the susceptible to bensulfuron-methly. Trial 1. Differential Response in Absorption and Translocation of Selected Cultivar Group. The susceptible cultivar group has reached as higher rate as 102%, 113%, 115%, 127% and 113% of the tolerant cultivar group in root absorption per seedling, per unit dry weight, and the rate of translocation from bottom to shoot, respectively. Trial 2. Differential Response in Absorption and Translocation of Selected Rice Cultivar as Affected by Exposed Time of Root Portion upto 48 hrs. ${\bullet}$ Regardless of leaf stage of experimented plants, the amount of absorption per seedling and per unit dry weight has reached rather higher in the susceptible(cv. IR 1846) than the tolerant (cv. Chinsurah Boro II). However, separating by portions, the tolerant was realized higher rate of aborption in root but the susceptible in shoot, respectively. ${\bullet}$ Translocation rate from root to shoot, namely the individual seedling based rate of radioactivity in shoot to total radioactivity, was significantly higher in the susceptile than the tolerant. ${\bullet}$ Depending on higher rate of seedling growth at the time of chemical treatment, the susceptible (cv. IR 1846) was seemed more sensitive even at equivalent rate of absorption and translocation.

  • PDF

Mechanism of Sulfonylurea Herbicide Resistance in Broadleaf Weed, Monochoria korsakowii (광엽잡초 물옥잠의 Sulfonylurea 제초제에 대한 저항성 작용기작)

  • Park, Tae-Seon;Lhm, Yang-Bin;Kyung, Kee-Sung;Lee, Su-Heon;Park, Jae-Eup;Kim, Tae-Wan;Kim, Kil-Ung
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.239-247
    • /
    • 2003
  • This experiment was carried out to study the resistant mechanism of sulfonylurea(SU) herbicides to Monochoria korsakowii occurring in the rice fields of Korea. The activity of acetolactate synthase(ALS), absorption and translocation of $[^{14C}]$bensulfuron-methyl, and DNA sequence of ALS genes were studied. The apparent SU resiatance to Monochoria korsakowii was confirmed in greenhouse testes. Fresh weight accumulation$(GR_{50})$ in the resistant biotype was about 5- to 64-fold higher in the presence of six SU herbicides compared to the susceptible biotype. The ALS activity isolated from the resistant biotype to herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity$(I_{50})$ was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of $[^{14C}]$bensulfuron uptake and translocation. However, the DNA sequence from the resistant biotype differed from that of the susceptible biotype by single nucleotide substitution at three amino acid each in the middle region excluding the ends of ALS genes. We found three point mutations causing substitution of serine for threonine at amino acid 168, arginine for histidine at amino acid 189, and a aspartic acid for phenylalanine at amino acid 247, respectively, in the resistant biotype.

Safening Mode of Action of 1, 8-Naphthalic Anhydride on Corn and Soybean Against Herbicide Bensulfuron and Imazaquin (제초제(除草劑) bensulfuron과 imazaquin에 대한 1, 8-naphthalic anhydride(NA)의 옥수수와 콩에 대한 약해경감작용기구(藥害輕減作用機構))

  • Hwang, I.T.;Choi, J.S.;Kim, J.S.;Cho, K.Y.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 1994
  • The mode of safening action and potency of the 1, 8-naphthalic anhydride(NA) were investigated in corn(Zea mays) and soybean(Glycine max) treated with herbicide bensulfuron[2-{{{{{(4,6-dimethoxy-2-pyrimidinyl)amino}carbonyl}amino}sulfonyl}methyl}benzoic acid] and imazaquin[2-{4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl} 3-quinolinonecarboxylic acid]. Seed dressing with 0.2%(w/w) NA showed successful protection in corn against injury from herbicide bensulfuron and imazaquin but not in soybean. Safening factors of NA against bensulfuron and imazaquin were 10.2 and 5.0, respectively, in corn, while they were both 1.3 in soybean. In vivo, Glutathione-S-transferase(GST) activity of NA-treated corn and soybean increased 1.8-and 1.3-fold, respectively, but the activity was not affected by the herbicides in vitro. Acetolactate synthase(ALS) levels of NA-treated corn was increased 1.3-fold, but not changed in soybean. Tolerance of ALS activity to the herbicides was slightly greater in ALS obtained from NA-treated corn than that from the untreated, whereas the difference was not found in soybean. A significant increase of ACCase due to NA occurred in corn, but not in soybean. The herbicides did not affect in vitro ACCase activity.

  • PDF

Status and Prospect of Herbicide Resistant Weeds in Rice Field of Korea (한국 논에서 제초제 저항성잡초 발생 현황과 전망)

  • Park, Tae-Seon;Lee, In-Yong;Seong, Ki-Yeong;Cho, Hyeon-Suk;Park, Hong-Kyu;Ko, Jae-Kwon;Kang, Ui-Gum
    • Korean Journal of Weed Science
    • /
    • v.31 no.2
    • /
    • pp.119-133
    • /
    • 2011
  • Sulfonylurea (SU)-resistant weeds include seven annual weeds such as Monochoria vaginalis, Scirpus juncoides and Cyperus difformis, etc., and three perennial weeds of Scirpus planiculmis, Sagittaria pigmaea and Eleocharis acicularis as of 2010 since identification Monochoria korsakowii in the reclaimed rice field in 1998. The Echinochloa oryzoides resistant to acetyl CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors has been confirmed in wet-direct seeding rice field of the southern province, Korea in 2009. In the beginning of occurrence of SU-resistant weeds the M. vaginalis, S. juncoides and C. difformis were rapidly and individually spreaded in different fields, however, theses resistant weeds have been occurring simultaneously in the same filed as time goes by. The resistant biotype by weed species demonstrated about 10- to 1,000-fold resistance, base on $GR_{50}$ (50% growth reduction) values of the SU herbicides tested. And the resistant biotype of E. oryzoides to cyhalofop-butyl, pyriminobac-methyl, and penoxsulam was about 14, 8, and 11 times more resistant than the susceptible biotype base on $GR_{50}$ values. In history of paddy herbicides in Korea, the introduction of SU herbicides including besulfuron-metyl and pyrazosulfuron-ethyl that control many troublesome weeds at low use rates and provide excellent crop safety gave farmers and many workers for herbicide business refreshing jolt. The products and applied area of SU-included herbicides have been rapidly increased, and have accounted for about 69% and 96%, respectively, in Korea. The top ten herbicides by applied area were composed of all SU-included herbicides by 2003. The concentrated and successive treatment of ACCase and ALS inhibitors for control of barnyardgrass in direct-seeded rice led up to the resistance of E. oryzoides. Also, SU-herbicides like pyrazosulfuron-ethyl and imazosulfuron which are effective to barnyardgrass can be bound up with the resistance of E. oryzoides. The ALS activity isolated from the resistant biotype of M. korsakowii to SU-herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity ($I_{50}$) of the SU-resistant M. korsakowii was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of [$^{14}C$]bensulfuron uptake and translocation. ALS genes from M. vaginalis resistant and susceptible biotypes against SU-herbicides revealed a single amino acid substitution of proline (CCT), at 197th position based on the M. korsakowii ALS sequence numbering, to serin (TCT) in conserved domain A of the gene. Carfentrazone-ethyl and pyrazolate were used mainly to control SU-resistant M. vaginalis by 2006, the early period, in Korea. However, the alternative herbicides such as benzobicyclone, to be possible to control simultaneously the several resistant weeds, have been developing and using broadly because the several resistant weeds have been occurring simultaneously in the same filed. The top ten herbicides by applied area in Korea have been occupied by products of 3-way mixture type including herbicides with alternative mode of action for the herbicide resistant weeds. Mefenacet, fentrazamide and cafenstrole had excellent controlling effects on the ACCase and ALS inhibitors resistant when they were applied within 2 leaf stage.

Current status, mechanism and control of herbicide resistant weeds in rice fields of Korea (한국 논에서 제초제 저항성잡초의 발생 현황, 메카니즘 및 방제)

  • Park, Tae Seon;Seong, Ki Yeong;Cho, Hyun Suk;Seo, Myung Chul;Kang, Hang Won;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.85-99
    • /
    • 2014
  • Sulfonylurea (SU)-resistant weeds of eight annual weeds, Monochoria vaginalis, Scirpus juncoides and Cyperus difformis, etc., and four perennial weeds, Scirpus planiculmis, Sagittaria pigmaea, Eleocharis acicularis and Sagittaria trifolia as of 2013 since identification Monochoria korsakowii in the reclaimed rice field in 1998. And the resistant Echinochloa oryzoides to ACCase and ALS inhibitors has been confirmed in rice fields of the southern province, Korea in 2009. In the beginning, the M. vaginalis, S. juncoides and C. difformis of these SU-resistant weeds were rapidly and individually spreaded in different fields, however, these resistant weeds have been occurring simultaneously in the same filed recently. The resistant biotype by weed species demonstrated about 10-to 1,000-fold resistance, based on $GR_{50}$ values of the SU herbicides tested. And the resistant biotype of E. oryzoides to cyhalofop-butyl, pyriminobac-methyl, and penoxsulam was about 14, 8, and 11 times more resistant than the susceptible biotype base on $GR_{50}$ values. The products and applied area of SU-included herbicides have been increased rapidly, and have accounted for about 69% and 96% in Korea, respectively. In Korea, the main cause of SU-resistant weed is extensive use of these herbicides. The top ten herbicides by applied area were composed of all SU-included herbicides by 2003. The concentrated and successive treatment of ACCase and ALS inhibitors for control of barnyardgrass in rice led up to the resistance of E. oryzoides. Also, SU-herbicides like pyrazosulfuron-ethyl and imazosulfuron which effective to barnyardgrass can be bound up with the resistance of E. oryzoides. The ALS activity isolated from the resistant biotype of M. korsakowii to SU-herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity ($I_{50}$) of the SU-resistant M. korsakowii was 14-to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of [$^{14}C$]bensulfuron uptake and translocation. Acetolactate synthase (ALS) genes from M. vaginalis resistant and susceptible biotypes against SU-herbicides revealed a single amino acid substitution of proline (CCT), at 197th position based on the M. korsakowii ALS sequence numbering, to serin (TCT) in conserved domain A of the gene. Carfentrazone-ethyl and pyrazolate were used mainly to control SU-resistant M. vaginalis by 2006 in Korea. However, the alternative herbicides such as benzobicyclone, to be possible to control simultaneously the several resistant weeds, have been developing and using broadly, because the several resistant weeds have been occurring simultaneously in the same fieled. The top ten herbicides by applied area in Korea have been occupied by products of 3-way mixture type including herbicides with alternative mode of action for the herbicide resistant weeds. Mefenacet, fentrazamide and cafenstrole had excellent controlling effects on the ACCase and ALS inhibitors resistant when they were applied within 2nd leaf stage.