• 제목/요약/키워드: $(xy)x{\approx}x(yy)$ graph algebra

검색결과 1건 처리시간 0.014초

HYPERIDENTITIES IN (xy)x ≈x(yy) GRAPH ALGEBRAS OF TYPE (2,0)

  • Khampakdee, Jeeranunt;Poomsa-Ard, Tiang
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.651-661
    • /
    • 2007
  • Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity $s{\approx}t$ if the corresponding graph algebra $\underline{A(G)}$ satisfies $s{\approx}t$. A graph G=(V,E) is called an $(xy)x{\approx}x(yy)$ graph if the graph algebra $\underline{A(G)}$ satisfies the equation $(xy)x{\approx}x(yy)$. An identity $s{\approx}t$ of terms s and t of any type ${\tau}$ is called a hyperidentity of an algebra $\underline{A}$ if whenever the operation symbols occurring in s and t are replaced by any term operations of $\underline{A}$ of the appropriate arity, the resulting identities hold in $\underline{A}$. In this paper we characterize $(xy)x{\approx}x(yy)$ graph algebras, identities and hyperidentities in $(xy)x{\approx}x(yy)$ graph algebras.