• Title/Summary/Keyword: $(CH_2CH_2OH)_2NH$

Search Result 94, Processing Time 0.021 seconds

Pressure Dependence on the Aquation of s-cis-[Co(ee)$Cl_2$]+ and s-cis-[Co(eee)$Br_2$]+ ions (s-cis-$[Co(eee)Cl_2$]^+ 및 s-cis-$[Co(eee)Br_2]^+ $착이온의 수화반응에 미치는 압력의 영향)

  • Jong-Jae Chung;Sung-Oh Bek
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.318-322
    • /
    • 1988
  • We studied the aquation reaction of s-cis-$[Co(eee)Cl_2]^+$ and s-cis-$[Co(eee)Br_2]^+$ complex ions under the various temperatures and pressures. In these complexes eee is $NH_2-CH_2CH_2-S-CH_2CH_2-NH_2$. The rate law of the aquation reactions of these two complexes obeys $Rate = k_{obsd}$[CO(III)], where rate constants of s-cis-$Co(eee)Cl_2]^+$ and s-cis-$[Co(eee)Br_2]^+$ respectively are $0.687{\times}10^{-4}$ $sec^{-1}$ and $4.10{\times}10^{-4}$ $sec^{-1}$ in condition of 0.1M $HClO_4\;and\;40^{\circ}C$. In the same condition, the activation entropies of s-cis-[Co(eee)$Cl_2$]+ and s-cis-(Co(eee)Br_2$]+ complexes respectively are -15.5 eu and -7.54eu, and the activation volumes are $-4.6cm^3mole^{-1}$ and $-4.2cm^3mole^{-1}$. From these data, we could infer the mechanism of the aquation reaction as the interchange dissociation (Id) mechanism.

  • PDF

The Study of Cyclophosphamide Metabolite $^{15}N$ and $^{17}O$ Phosphoramide Mustards (항암제인 Cyclophosphamide의 중간체인 $^{15}N$$^{17}O$-phosphoramide Mustards의 합성)

  • Koo, Kyo-Im;Ryem, Kon
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.455-461
    • /
    • 1994
  • Each nitrogen and oxygen site isotope enriched the cyclophosphamide metabolite phosphoramide mustard was synthesized. Reaction of N,N-bis(2-chloroethyl)phosphoramidic dichloride$[Cl_2P(O)N(CH_2CH_2Cl)_2]$ with benzyl alcohol and ammonia gave N,N-bis(2-chloroethyl)phosphorodiamidic acid phenylmethyl ester $[BzO(H_2N)P(O)N(CH_2CH_2Cl)_2]$. Catalytic hydrogenation of this benzyl ester followed by the addition of cyclohexylamine provided PM. Incorporation of $^{15}NH_3$ into this general scheme gave PM with a $^{15}NH_2$ moiety. Glycine-$^{15}N$ was converted to bis(2-chloroethyl)amine-$^{15}N$ hydrochloride which, in turn, provided for N,N-bis(2-chloroethyl)phosphorodiamidic-$^{15}N$ dichloride. Use of this compound in the general synthetic pathway yielded PM CHA with $^{15}N$ in the mustard moiety. $^{17}O$-Enriched PM was generated through the use of benzyl alcohol-$^{17}O$. To obtain the alcohol, labelled benzaldehyde was made by exchange with $^{17}OH_2$ and was then reduced with sodium borohydride.

  • PDF

The Effect by Aqueous NH4OH Treatment on Ru Promoted Nickel Catalysts for Methane Steam Reforming (암모니아 용액 처리에 의한 Ru-Ni/Al2O3 촉매의 메탄 수증기 개질 반응에 미치는 영향)

  • Lee, Jung Won;Jeong, Jin Hyeok;Seo, Dong Joo;Seo, Yu Taek;Seo, Yong Seog;Yoon, Wang Lai
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2006
  • The steam reforming of methane over Ru-promoted $Ni/Al_2O_3$ was carried out. Compared with $Ni/Al_2O_3$, which needs pre-reduction by $H_2$, $Ru/Ni/Al_2O_3$ catalysts exhibited relatively higher activity than conventional $Ni/Al_2O_3$. According to $H_2-TPR$ of reduced or used catalysts and $CH_4-TPR$, it was revealed that the reduction of $RuO_x$ by $CH_4$ decomposition begins at a lower temperature ($220^{\circ}C$) and the reduced Ru facilitates the reduction of NiO, and leads to self-activation. To improve metal dispersion, the catalyst was soaked in 7 M aqueous $NH_4OH$ for 2 h at $45^{\circ}C$ while stirring. As a result, $Ru/Ni/Al_2O_3$ catalysts with aqueous $NH_4OH$ treatment have higher activity, larger metal surface area (by $H_2$-chemisorption), and small particle size (by XRD and XPS). It is noted that the amount of noble metal could be reduced by aqueous $NH_4OH$ treatment.

Response Characteristics of Thick Film Sensors Using Nano ZnO:Ni for Hydrocarbon Gas (나노 ZnO:Ni를 이용한 후막 가스센서의 탄화수소계 가스에 대한 감응특성)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.

Theoretical Studies on the Gas-phase Reaction of Methyl Formate with Anions$^\dag$

  • Lee, Ik-Choon;Chung, Dong-Soo;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.273-278
    • /
    • 1989
  • The gas-phase reactions of methyl formate with anions, $-NH_2,\;-OH,\;-CH_2CN$, are studied theoretically using the AM1 method. Stationary points are located by the reaction coordinate method, refined by the gradient norm minimization and characterized by the determination of Hessian matrix. Potential energy profiles and the stationary point structures are presented for all conceivable processes. Four reaction paths are found to be possible: formyl proton and methyl proton abstractions, carbonyl addition, and $S_N2$ process. For the most basic anion $-NH_2$ the proton abstraction path is favored, while in other case, $OH\;and\;-CH_2CN$, the carbonyl addition paths are favored. In all cases the $S_N2$ process is the most exothermic, but due to the relatively high activation barrier the process can be ruled out.

Kinetics and Mechanism of the Aminolysis of Anilino Thioethers with Benzylamines in Acetonitrile

  • Oh, Hyuck-Keun;Lee, Jae-Myun;Sung, Dae-Dong;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.557-559
    • /
    • 2004
  • The aminolyses of anilinothioethers $(C_6H_5N(CH_3)CH_2SC_6H_4Z)$ in acetonitrile with benzylamines $(XC_6H_4CH_2NH_2)$ have been investigated. The rates are much lower in acetonitrile than in methanol (with aniline). The Bronsted ${\beta}_X$ values are similar but ${\beta}_Z$ values are smaller compared to those for the reactions in MeOH with anilines. The large negative ${\rho}_{XZ}({\cong}-0.8$, after correction for fall-off) value is interpreted to indicate a frontside attack $S_N2$ mechanism, in which the two oppositely changed reaction centers in the TS, $-N^{{\delta}+}{\cdots}S^{{\delta}-}-$, are in close vicinity increasing the interaction between nucleophile and leaving group. The inverse secondary kinetic isotope effects ($k_H/k_D$ < 1.0) are observed with deuterated benzylamines $(XC_6H_4CH_2ND_2)$.

Conformations, Chemical Reactivities and Spectroscopic Characteristics of Some Di-substituted Ketenes: An ab initio Study

  • Gupta, V.P.;Sharma, Archna;Agrawal, S.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1297-1304
    • /
    • 2006
  • A systematic study of the structure, energetics and spectral characteristics of substituted aminoketenes $R(NH_2)$C=C=O (R = H, $CH_3$, $NH_2$, OH, $OCH_3$, CH=$CH_2$, C$\equiv$CH, CN, CHO, NO, $NO_2$) which are highly reactive and transient intermediates in synthesis has been conducted by ab initio calculations at the MP2/6- 31G*//MP2/6-31G* level. Twenty four stable isomers of the eleven substituted aminoketenes having dihedral angles $\phi NH_2\sim120{^{\circ}}$ and $60^{\circ}$ have been identified and their optimized geometries and energies obtained. Electrostatic and steric effects on the molecular geometries have been analyzed. While the $\pi$-acceptor groups lead to planar conformations, the electron-donor groups give rise to non-planar conformations. Isodesmic substituent stabilization energies relative to alkenes have been calculated and correlation with group electronegativities established. Role of induction effect by the substituent groups and resonance effects in charge distribution in the molecules has been analyzed. An analysis of the asymmetric stretching frequencies and intensities of the C=C=O group shows that affect of non-$\pi$ acceptor substituents on the frequency is determined by the field effect (F) and resonance effect (R) parameters, the calculated intensities I (km/mol.) are correlated to group electronegativities $x$ of the substituents by the relationship I = 640.2–100.1 $x$ (r = 0.92). The $\pi$-acceptor substituents increase the intensity which may be explained in terms of their delocalizing effect on the negative charge at the $C_{\beta}$ atom.

Electrical and Optical Properties of ZnO/$SnO_2$:F Thin Films under the Hydrogen Plasma Exposure (ZnO/$SnO_2$:F 박막의 수소플라즈마 처리에 따른 전기적.광학적 특성 변화)

  • Kang, Gi-Hwan;Song, Jin-Soo;Yoon, Kyung-Hoon;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1147-1149
    • /
    • 1993
  • ZnO/$SnO_2$:F bilayer films have been prepared by pyrosol deposition method to develop optimum transparent electrode for use in amorphous silicon solar cells. The solution for $SnO_2:F$ film was composed of $SnCl_4{\cdot}5H_2O,\;NH_4F,\;CH_3OH$ and HCl, and ZnO films have been deposited on the $SnO_2:F$ films by using the solution of $ZnO(CH_3COO){_2}{\cdot}2H_2O,\;H_2O\;and\;CH_3OH$. These films have been investigated the variation of electrical and optical properties under the hydrogen plasma exposure. The sheet resistance of the $SnO_2:F$ film was sharply increased and its transmittance was decreased with the blackish effect after plasma treatment. However, the ZnO/$SnO_2:F$ bilayer film was shown hydrogen plasma durability because the electrical and optical properties was almost unchanged more then 60 seconds exposure time.

  • PDF

Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene Meldrum's Acids in Acetonitrile

  • Oh, Hyuck-Keun;Kim, Tae-Soo;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.193-196
    • /
    • 2003
  • Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)$ to benzylidene Meldrum's acids (BMA; $YC_6H_4CH=C(COO)_2C(CH_3)_2$) have been investigated in acetonitrile at 20.0 ℃. The rates of addition are greatly enhanced due to the abnormally high acidity of Meldrum's acid. The magnitudes of the Hammett $({\rho}_X\;and\;{\rho}_Y)$ and Bronsted $({\rho}_X$)$ coefficients are rather small suggesting an early transition state. The sign and magnitude of the cross-interaction constant, ${\rho}_{XY}$ (= -0.33), and kinetic isotope effects $(k_H/k_D\;{\stackrel}{~}{=}\;1.5-1.7)$ involving deuterated benzylamine nucleophilies $(XC_6H_4CH_2ND_2)$ are indicative of hydrogen-bonded cyclic transition state. The activation parameters, ${\Delta}H^{\neq}\;{\stackrel}{~}{=}\;4\;kcal\;mol^{-1}\;and\;{\Delta}S^{\neq}\;{\stackrel}{~}{=}\;-37\;e.u.$, are also in line with the proposed mechanism.

Synthesis and Spectroscopic Studies of Metal Complexes Formed in the Reaction of Metal Ions with Urea at High Temperature (높은 온도에서 Urea와 금속이온과의 반응으로 얻어진 금속 Complexes의 합성과 분광학적 연구)

  • Gaballa, Akmal S.;Teleb, Said M.;Nour, El-Metwally
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • Urea reacts with PtCl2, H2[PtCl6]·6H2O, H2[IrCl6] and Ni(CH3CO2)2 in aqueous solution at high temperature (60-80 °C) yielding [PtCl2(Urea)]·2H2O (1), (NH4)2[PtCl6] (2), (NH4)2[IrCl6]·H2O (3) and [Ni2(OH)2(NCO)2(H2O)2] (4) complexes, respectively. In complex 1, urea coordinates to Pt(II) as a neutral bidentate ligand via amido nitrogen atoms. In complexes 2, 3 and 4 it seems that the coordinated urea molecules decompose during the reaction at high temperature and a variety of reaction products are obtained. All complexes were isolated in moderate yields as dark green (1), yellow (2), pale brown (3) and faint green (4) precipitates, respectively. The reaction products were characterized by their microanalysis, IR, 1H and 13C NMR spectra as well as thermal analysis. General mechanisms describing the formation of these complexes were suggested.