• Title/Summary/Keyword: "UTM(Unmanned Aircraft System Traffic Management)"

Search Result 9, Processing Time 0.017 seconds

Navigation Performance Analysis Method for Integrated Navigation System of Small Unmanned Aerial Vehicles

  • Oh, Jeonghwan;Won, Daehan;Lee, Dongjin;Kim, Doyoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • Currently, the operation of unmanned aerial vehicle (UAV) is regulated to be able to fly only within the visible range, but in recent years, the needs for operation in the invisible area, in the urban area and at night have increased. In order to operate UAVs in the invisible area, at night, and in the urban area, a flight path for UAVs must be prepared like those operated by manned aircraft, and for this, it is necessary to establish an unmanned aircraft system traffic management (UTM). In order to establish the UTM, information on the minimum separation distance to prevent collisions with UAVs and buildings is required, and accordingly, information on the navigation performance of UAVs is required. In order to analyze the navigation performance of an UAV, total system error (TSE), which is the difference between the planned flight path and the actual location of the UAV, is required. If the collected data are insufficient and classification according to integrity, independence, and direction is not performed, accurate navigation performance is not derived. In this paper, propose a navigation performance analysis method of UAV that is derived TSE using flight data and modeled with normal distribution, analyze performance.

3D Coverage Analysis of LTE Network for UTM Services Considering Actual Terrain and Base Station Layouts (실제 지형과 기지국 배치를 고려한 UTM 통신을 위한 LTE 통신망 3차원 커버리지 분석)

  • Jang, Minseok;Kim, Daeho;Kim, Hee Wook;Jung, Young-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2022
  • Unmanned aircraft system traffic management (UTM) service for the safe operation of unmanned aerial vehicles (UAV) such as drones using commercial communication networks such as long-term evolution (LTE) and 5G in low-altitude areas of 150m or less is being studied in several countries. In this paper, whether it is possible to secure three-dimensional (3D) coverage for UTM service using the existing LTE cellular network for terrestrial usersis analyzed through simulations. The practicality in the real environment is confirmed by performing performance analysis in the actual topographical environment and the LTE base station layouts in Korea. According to the analysis results, as the altitude increases, the number of line-of-sight (LOS) interference base stations increases, resulting in a worse signal to interference plus noise ratio (SINR), but coverage is secured except for the limited areas within 150m. was confirmed to be possible. In addition, it is confirmed that a significant proportion of outage areas could be reduced by placing a small number of additional base stations for the outage area.

SA Review on Necessity to Calculate Navigation Errors in UTM Environments with SE Process (SE프로세스를 적용한 UTM 환경의 항법 오차 산출 필요성 검토)

  • Ku, SungKwan;Ahn, Hyojung;Kim, DoHyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • This study carries out a basic study of ways to calculate navigation errors for aircraft operating in the unmanned aerial system traffic management(UTM). Recently, research by UTM has been carried out both at home and abroad, along with the initial study of system definitions at the basic stage, operational techniques of the aircraft, and the practicality of the concept of necessary operations at the actual operational stage. This study presented after a review the factors that should be considered for the calculation of navigation errors among the factors that examine whether the actual low altitude aircraft can operate properly within UTM during its actual operation and the need to apply them in practice.

Influencing factors of low-altitude unmanned aircraft navigation using AHP

  • Ku, SungKwan;An, HyoJung;Lee, DongJin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.173-181
    • /
    • 2020
  • This study examines whether unmanned aircraft systems (UAS) operated in the context of UAS traffic management (UTM) can be properly operated in its flight environment. In detail, this study examines the influencing navigation factors affecting UASs during flight and examines factors affecting the navigation of UASs under UTM. After deriving various factors affecting navigation, their importance are determined by applying the analytic hierarchy process technique, and the important influencing factors are examined. For low-altitude UAS navigation, errors are classified into navigation-system and flight-technical errors, and a hierarchy is constructed for their sub-factors affecting the influencers. Through this, influencing factors for precise navigation of low-altitude UAS are analyzed, and high importance items are identified.

A Study on UAM Traffic Management System Development Trends and Concept Design (UAM 교통관제시스템 개발 동향 및 설계 개념 연구)

  • Changhwan Heo;Kwangchun Kang;Heungkuen Yoon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • In aviation, with the rapid transformation of the mobility industry, UAMs are emerging to operate green low-altitude airspace in urban environments. In order for UAM aircraft to fly safely transporting passengers and cargo in low-altitude urban airspace, a traffic control system that supports the safe operation of the aircraft is essential. In particular, traffic control systems that reflect the characteristics of the flight environment, such as operating at low altitude in urban environments for a short period of time, are required. In this study, we define the definition of UATM and its main services that perform traffic control for the safe operation of UAMs. In addition, we analyzed the development trends of UATM systems based on domestic and overseas cases. Based on these analyses, we present the results of the concept design of the UATM system. After analyzing UATM development cases, we found that there is no commercialized UATM system, but overseas development is focused on systems that can integrate ATM and UTM. And we identified key stakeholders and interface data, and performed UATM system architecture and functional design based on the identified data. Finally, as a necessary element for the future development of UATM systems, we propose the establishment and advancement of UAM traffic flow management systems, the establishment of integrated control systems, and the development of interface with aircraft operation systems in preparation for the unmanned UAM aircraft.

A Study on the Establishment of Minimum Safe Altitude and UAS Operating Limitations (최저비행고도와 UAS 운영제한고도 구축에 관한 연구)

  • Kim, Do Hyun;Lee, Dong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.94-99
    • /
    • 2021
  • UTM is an air traffic management ecosystem under development for autonomously controlled operations of UAS by the FAA, NASA, other federal partner agencies, and industry. They are collaboratively exploring concepts of operation, data exchange requirements, and a supporting framework to enable multiple UAS operations beyond visual line-of-sight at altitudes under AGL 500ft in airspace where air traffic services are not provided. Minimum Safe Altitude is a generic expression, used in various cases to denote an altitude below which it is unsafe to fly owing to presence of terrain or obstacles. The European drone regulation mentions that the UAS is maintained within 120 metres from the closest point of the surface of the earth during flight, except when overflying an obstacle. This study attempted to develop a minimum flight altitude database system. Based on domestic and international rules and regulations on setting the minimum flight altitude it is expected that it can be applied to the operation of aircraft and unmanned aerial system in UTM environments for specific area in Korea.

Study on UAV Flight Patterns and Simulation Modelling for UTM (저고도 무인기 교통관리 체계에서 무인기 비행패턴 분류 및 시뮬레이션 모형 개발)

  • Jung, Kyu-sur;Kim, Se-Yeon;Lee, Keum-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • In this paper, we classified a flight pattern of unmanned aerial vehicle(UAV) which will be operating in UTM system and analyzed its flight pattern by purpose of use. Flight patterns of UAV are sorted into three patterns which are circling, monitoring and delivery. We considered four cases of industry areas using UAV which are agriculture, infrastructure monitoring, public safety & security(p.s.s) and delivery. It is necessary to build a simulation model as a verification tool for applying the flight pattern according to the use of UAV to the real UTM system. Therefore, we propose the simulation model of UAV with updating states over time. We applied simulation to UAV monitoring flight pattern, and confirmed that the flight was done by the given input data. The simulation model will be used in the future to verify that the UAV has various flight patterns and can operate safely and efficiently for the intended use.

Developing a Sustainable IoT Platform (지속 가능한 IoT 플랫폼 개발)

  • Choi, Hyo Hyun;Lee, Gyeong young;Yun, Sang un
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.243-244
    • /
    • 2019
  • 본 논문에서는지속 가능한 IoT Platform을 개발 하였다. 개발된 IoT(Internet of Things) Platform은 센서를 제어하는 특정 시스템과의 통신을 통한 제어 및 데이터 전달에 용이하고, 제한된 통신 환경 및 낮은 전력에서도 지속적인 작동이 가능하여 가용성(Availability)과 확장성(Extensibility)이 뛰어나다. 본 논문에서는 지속 가능한 IoT Platform의 테스트를 위해 클라우드 컴퓨팅 플랫폼인 AWS EC2(Amazon Elastic Compute Cloud, EC2)에 구축하였으며, DataBase 서버로는 오픈 소스 관계형 데이터베이스 관리 시스템인 MariaDB를 선정하였으며, 센서를 제어하는 특정 시스템인 스마트 미러 시스템(Smart Mirror System)과 미세먼지 제어 시스템(Air Quality Control System)에 기존의 Google IoT Platform에서 사용되는 MQTT Protocol(Message Queuing Telemetry Transport Protocol)와 지속 가능한 IoT Platform를 위해 개발된 TCP/IP Protocol를 사용하여 비교했다. 개발된 IoT Platform은 UTM(Unmanned Aircraft System Traffic Management)으로 확장할 계획이다.

  • PDF

Analysis of Low Altitude Wind Profile Data from Wind Lidar for Drone Aviation Safety (드론의 안전 비행을 위한 윈드라이다 저고도 바람 분석 방법 제시)

  • Kim, Je-Won;Ryu, Jung-Hee;Na, Seong-Jun;Seong, Seong-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.899-907
    • /
    • 2022
  • According to the Unmanned aircraft system Traffic Management (UTM), drones are permitted to fly up to 150m above ground, which is located in the atmospheric boundary layer where there is considerable wind fluctuation due to turbulence. Although it is difficult to predict when turbulence will occur drone aviation safety could be enhanced by having a better understanding of the characteristics of vertical profile of wind in the flight area. We used wind lidar (WIndMast 350M) to observe vertical profiles of wind at the test site for aviation meteorological observation equipment located near Incheon International Airport in July and September, 2022. In this study, we utilized the observed wind profile data to propose a technique for obtaining information that could help improve the drone aviation safety. The Fourier transform analysis is used to evaluate the temporal characteristics of the horizontal wind speed at various vertical levels up to 350m. We also examined the relative contribution of the variance of wind having scales of less than an hour, a crucial scale for drone flight, to the variance of wind having all scales at each vertical altitude for days with and without precipitation.