• Title/Summary/Keyword: "The cat"

Search Result 2,110, Processing Time 0.035 seconds

Protective Effect of PineXol® on Hydrogen Peroxide-induced Apoptosis on SK-N-MC Cells and Focal Ischemia Rodent Models (파인엑솔이 과산화수소로 유도된 SK-N-MC 세포와 뇌졸중 백서 모델에서의 보호효과)

  • Hong, Soon-O;Han, Kyung-Hoon;Lee, Seung-Hee;Kim, Doh-Hee;Song, Kwan-Young;Han, Sung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.923-929
    • /
    • 2016
  • The purpose of this study was to evaluate the protective effect of $PineXol^{(R)}$ on $H_2O_2$-induced cell death in SK-N-MC cells, and in early stage focal ischemia rodent model. SK-N-MC cells were pre-treated with $200{\mu}M$ $H_2O_2$ or various concentrations of $PineXol^{(R)}$ (10, 30, and 50 pg/mL) for 24 h, and then exposed to $H_2O_2$ for 3 h. Cell death was assessed by the CCK-8 assay, reactive oxygen species (ROS) assay, and lactate and dehydrogenase (LDH) release assay. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) expressions were also analyzed by western blotting. Focal ischemia rodent model was used as the in vivo model, and different concentrations of $PineXol^{(R)}$ (1, 10, and 100 mg/kg) were administered. One week after administration, reduction of infarct volume was analyzed by TTC staining. Cell viability of $H_2O_2$-treated SK-N-MC cells significantly increased by pre-treatment of $PineXol^{(R)}$ (p<0.05). $PineXol^{(R)}$ pre-treatment also induced significant decrease of ROS and LDH expressions. However, $PineXol^{(R)}$ did not affect the infarct volume. These results suggest that $PineXol^{(R)}$ has significant neuroprotective effect in vitro, but statistical significance was not confirmed in the in vivo focal ischemia model.

Antitumoral and Antioxidant Potential of Egyptian Propolis Against the PC3 Prostate Cancer Cell Line

  • Salim, Elsayed I;Abd El-Magid, Afaf D;Farara, Khalid M;Maria, Dina SM
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7641-7651
    • /
    • 2015
  • It has been shown previously that nutritional supplements rich in polyphenolic compounds play a significant role in prostate cancer chemoprevention. Propolis is a natural, resinous hive product that has several pharmacological activities including antimicrobial, antioxidant, anti-inflammatory, and antitumoral activities. The aim of this study was to compare the cytotoxic, antioxidant and antitumoral activities of an ethanolic extract of Egyptian propolis (EEP) in vitro with an established chemotherapeutic drug such as doxorubicin (DOX), and the effects of their combination against the PC3 human prostate cancer cell line. Cellular viability and $IC_{50}$ levels with EEP, DOX and their (v/v) combination were detected by sulphorhodamine-B (SRB) assay after incubation of PC3 cells for 72h with different doses (0, 0.01, 0.1, 1, 10 and $100{\mu}g/ml$). Two selected doses of $IC_{50}$ and $IC_{25}$ were applied to cells for 24h for antitumor evaluation assay of treatment compounds. EEP and its (v/v) combination with DOX showed significant antitumor potential besides high antioxidant properties of superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase (CAT), nitric oxide (NO) and reduced glutathione (GSH) levels when compared with the control untreated cells. DNA fragmentation assay and semi quantitative RT-PCR analyses for p53 and Bax genes showed that EEP activated cellular apoptosis and increased the mRNA expression levels more than other treatment. In conclusion, EEP alone or in combination with DOX at both doses used here showed greater antioxidant, antiproliferative and apoptotic effects against the PC3 cell lines as compared to treatment with DOX alone. Therefore, EEP could be considered as a promising candidate for prostate cancer chemotherapy.

Occurrence and Molecular Identification of Giardia duodenalis from Stray Cats in Guangzhou, Southern China

  • Zheng, Guochao;Hu, Wei;Liu, Yuanjia;Luo, Qin;Tan, Liping;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.119-124
    • /
    • 2015
  • The objective of this study was to genetically characterize isolates of Giardia duodenalis and to determine if zoonotic potential of G. duodenalis could be found in stray cats from urban and suburban environments in Guangzhou, China. Among 102 fresh fecal samples of stray cats, 30 samples were collected in Baiyun district (urban) and 72 in Conghua district (suburban). G. duodenalis specimens were examined using light microscopy, then the positive specimens were subjected to PCR amplification and subsequent sequencing at 4 loci such as glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), ${\beta}$-giardin (bg), and small subunit ribosomal RNA (18S rRNA) genes. The phylogenetic trees were constructed using obtained sequences by MEGA5.2 software. Results show that 9.8% (10/102) feline fecal samples were found to be positive by microscopy, 10% (3/30) in Baiyun district and 9.7% (7/72) in Conghua district. Among the 10 positive samples, 9 were single infection (8 isolates, assemblage A; 1 isolate, assemblage F) and 1 sample was mixed infection with assemblages A and C. Based on tpi, gdh, and bg genes, all sequences of assemblage A showed complete homology with AI except for 1 isolate (CHC83). These findings not only confirmed the occurrence of G. duodenalis in stray cats, but also showed that zoonotic assemblage A was found for the first time in stray cats living in urban and suburban environments in China.

Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells

  • Pongkittiphan, Veerachai;Chavasiri, Warinthorn;Supabphol, Roongtawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5371-5376
    • /
    • 2015
  • Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity ($IC_{50}$ values=$10.7{\pm}1.76$, $55.2{\pm}2.24$, and $87.4{\pm}6.65{\mu}M$, respectively) whereas the $IC_{50}$ value of berberine was higher than $500{\mu}M$. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant ($IC_{50}=72.7{\pm}7.22{\mu}M$) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of $IC_{50}$ value at 7-day treatment stated that B1 < B4 < B2 ($0.44{\pm}0.03$, $2.88{\pm}0.23$, and $6.05{\pm}0.64{\mu}M$, respectively). Berberine derivatives, B2 and B4, showed approximately the same level of CAT expression and significant up-regulation of SOD expression in a dose-dependent manner compared to berberine treatment for 7-day exposure using reverse transcription-polymerase chain reaction (RT-PCR) assays. Our findings show a better direct-antioxidant activity of the derivatives containing phenolic groups than berberine in a cell-free system. For cell-based system, berberine was able to exert better cytotoxic activity than its derivatives. Berberine derivatives containing a single and four phenolic groups showed improved up-regulation of SOD gene expression. Cytotoxic action might not be the main effect of berberine derivatives. Other pharmacological targets of these derivatives should be further investigated to confirm the medical benefit of phenolic groups introduced into the berberine molecule.

Antioxidant Effects of Gamma-oryzanol on Human Prostate Cancer Cells

  • Klongpityapong, Papavadee;Supabphol, Roongtawan;Supabphol, Athikom
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5421-5425
    • /
    • 2013
  • Background: To assess the antioxidant effects of gamma-oryzanol on human prostate cancer cells. Materials and Methods: Cytotoxic activity of gamma-oryzanol on human DU145 and PC3 prostate cancer cells was determined by proliferation assay using 3-(4, 5-dimethylthiazol, 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reagent. mRNA levels of genes involved in the intracellular antioxidant system, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GSR) were determined by reverse transcription-polymerase chain reaction (RT-PCR). Cancer cell lysates were used to measure lipid peroxidation using thiobarbituric acid reactive substance (TBARS). Glutathione contents of the cell lysates were estimated by the reaction between sulfhydryl group of 5, 5'-dithio (bis) nitrobenzoic acid (DTNB) to produce a yellow-color of 5-thio-2-nitrobenzoic acid using colorimetric assay. Catalase activity was also analysed by examining peroxidative function. Protein concentration was estimated by Bradford's assay. Results: All concentrations of gamma-oryzanol, 0.1-2.0mg/ml, significantly inhibited cell growth in a dose- and time-dependent fashion in both prostate cancer cell lines, DU145 and PC3. Gene expression of catalase in DU145 and PC3 exposed to gamma-orizanol at 0.5mg/ml for 14 days was down regulated, while mRNA of GPX was also down regulated in PC3. The MDA and glutathione levels including catalase activity in the cell lysates of DU145 and PC3 treated with gamma-oryzanol 0.1 and 0.5mg/ml were generally decreased. Conclusions: This study highlighted effects of gamma-oryzanol via the down-regulation of antioxidant genes, catalase and GPX, not cytotoxic roles. This might be interesting for adjuvant chemotherapy to make prostate cancer cells more sensitive to free radicals. It might be useful for the reduction of cytotoxic agents and cancer chemoprevention.

Prevalence of Toxoplasma gondii Infection in Stray and Household Cats in Regions of Seoul, Korea

  • Lee, Sang-Eun;Kim, Jae-Yeong;Kim, Yun-Ah;Cho, Shin-Hyeong;Ahn, Hye-Jin;Woo, Heung-Myong;Lee, Won-Ja;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.267-270
    • /
    • 2010
  • The principal objective of this study was to investigate the prevalence of toxoplasmosis in household and stray cats in Seoul, Republic of Korea. We collected blood samples from 72 stray and 80 household cats, and all samples were examined by ELISA and nested peR. The overall positive rates of Toxoplasma gondii in stray cats were 38.9% (28/72), with 15.3% (11/72) in ELISA and 30.6% (22/72) in peR. The positive rate in male stray cats was Slightly higher than that of female stray cats. The highest positive rate of T. gondii infection was noted in Gangnam and Songpa populations in ELISA and in Gwangjin population in PCR. In household cats, however, we could not detect any specific antibodies or DNA for T. gondii. In conclusion, we recognized that the infection rate of toxoplasmosis in stray cats in Seoul was considerably high but household cats were free from infection.

Characterization and Application of a Novel Thermostable Glucoamylase Cloned from a Hyperthermophilic Archaeon Sulfolobus tokodaii

  • Njoroge, Rose Nyawira;Li, Dan;Park, Jong-Tae;Cha, Hyun-Ju;Kim, Mi-Sun;Kim, Jung-Wan;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.860-865
    • /
    • 2005
  • A gene for a putative glucoamylase, stg, of a hyperthermophilic archae on Sulfolobus tokodaii was cloned and expressed in Escherichia coli. The recombinant glucoamylase (STGA) had an optimal temperature of $80^{\circ}C$ and was extremely thermostable with a D-value of 17 hr. The pH optimum of the enzyme was 4.5. Being different from fungal glucoamylases, STGA hydrolyzed maltotriose (G3) most efficiently. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation analysis showed that the enzyme existed as a dimer. STGA was stable enough to hydrolyze liquefied com starch to glucose in 4 hr at $90^{\circ}C$ with a yield of95%. Comparison of the $k_{cat}$ values for the hydrolysis and the reverse reaction at $75^{\circ}C$ and $90^{\circ}C$ indicated that glucose production by STGA was more efficient at $90^{\circ}C$ than $75^{\circ}C$. Therefore, STGA showed great potential for application to the industrial glucose production process due to its high thermostability.

Variable expression observed in a Korean family with Townes-Brocks syndrome caused by a SALL1 mutation

  • Seo, Yeon Jeong;Lee, Ko Eun;Ko, Jung Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • Townes-Brocks syndrome (TBS) is a rare genetic disorder characterized by the classic triad of congenital anomalies of the anus, thumbs, and ears, with variable expressivity. Additionally, renal malformations, cardiac anomalies, and endocrine and eye abnormalities can accompany TBS, although less frequently. TBS is inherited in an autosomal dominant fashion; however, about 50% of patients have a family history of TBS and the remaining 50% have de novo mutations. SALL1, located on chromosome 16q12.1, is the only causative gene of TBS. SALL1 acts as a transcription factor and may play an important role in inducing the anomalies during embryogenesis. Clinical features of TBS overlap with those of other multiple anomaly syndromes, such as VACTERL syndrome, Baller-Gerold syndrome, Goldenhar syndrome, cat eye syndrome, and Holt-Oram syndrome. Consequently, there are some difficulties in differential diagnosis based on clinical manifestations. Herein, we report a Korean family with two generations of TBS that was diagnosed based on physical examination findings and medical history. Although the same mutation in SALL1 was identified in both the mother and the son, they displayed different clinical manifestations, suggesting a phenotypic diversity of TBS.

Paraquat-resistant lines in Pisum sativum cv. Alaska: biochemical and phenotypic characterization

  • Haque, Md. Emdadul;Yoshida, Yusuke;Hasunuma, Kohji
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • In plants, the oxygen generated by photosynthesis can be excited to form reactive oxygen species (ROS) under excessive sunlight. Excess ROS including singlet oxygen ($^1O_2$) inhibit the growth, development and photosynthesis of plants. To isolate ROS-resistant crop plants, we used paraquat (PQ), a generator of $O_2{^-}$ as a source of screening and mutagen, and obtained two PQ-resistant lines in Pisum sativum, namely R3-1 and R3-2. Both lines showed greater resistance to PQ than their wild type (WT) siblings with respect to germination, root growth, and shoot growth. Biochemical analysis showed differences in these lines, in which ROS-scavenging enzymes undergo changes with a distinguishable increase in Mn-SOD. We further observed that the cytosolic catalases (CATs) in leaves in both lines were shifted in a native-PAGE analysis compared with that of the WT, indicating that the release of bound $^1O_2$ was enhanced. Phenotypic analysis revealed distinguishable differences in leaf development, and in flowering time and position. In addition, R3-1 and R3-2 showed shorter individual inter-node lengths, dwarf plant height, and stronger branching compared with the WT. These results suggested that PQ-induced ROS-resistant Pisum have the potential pleiotropic effects on flowering time and stem branching, and that ROS including $^1O_2$ plays not only important roles in plant growth and development as a signal transducer, but also appears as a strong inhibitor for crop yield.

Scratching Stimuli of Mycelia Influence Fruiting Body Production and ROS-Scavenging Gene Expression of Cordyceps militaris

  • Liu, Gui-Qing;Qiu, Xue-Hong;Cao, Li;Han, Ri-Chou
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.382-387
    • /
    • 2018
  • The entomopathogenic fungus Cordyceps militaris is a valuable medicinal ascomycete, which degenerates frequently during subsequent culture. To avoid economic losses during industrialized production, scratching stimuli of mycelia was introduced to improve the fruiting body production. The present results indicated that higher yields and biological efficiency were obtained from two degenerate strains (YN1-14 and YN2-7) but not from g38 (an insertional mutant in Rhf1 gene with higher yields and shorter growth periods). Furthermore, the growth periods of the fruiting bodies were at least 5 days earlier when the mycelia were scratched before stromata differentiation. Three ROS-scavenging genes including Cu/Zn superoxide dismutase (CmSod1), Glutathione peroxidase (CmGpx), and Catalase A (CmCat A) were isolated and their expression profiles against scratching were determined in degenerate strain YN1-14 and mutant strain g38. At day 5 after scratching, the expression level of CmGpx significantly decreased for strain g38, but that of CmSod1 significantly increased for YN1-14. These results indicated that scratching is an effective way to promote fruiting body production of degenerate strain, which may be related at least with Rhf1 and active oxygen scavenging genes.