Browse > Article

The assessment of anesthetic depth by quantitative electroencephalography in intravenous anesthesia by intermittent bolus injection  

Lee, Soo-Han (College of Veterinary Medicine, Konkuk University)
Bae, Chun-Sik (College of Veterinary Medicine, Biotechnology Research Institute, Chonnam National University)
Noh, Gyu-Jeong (Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine)
Bae, Kyun-Seop (Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine)
Kim, Jin-Young (College of Veterinary Medicine, Konkuk University)
Chung, Byung-Hyun (College of Veterinary Medicine, Konkuk University)
Publication Information
Korean Journal of Veterinary Research / v.45, no.1, 2005 , pp. 131-137 More about this Journal
Abstract
To assess anesthetic depth using quantitative electroencephalography (q-EEG), we recorded processed EEG (raw EEG) till 100 minutes in beagle dogs anesthetized for 60 minutes with tiletamine/zolazepam (n=5, TZ group), xylazine/ketamine (n=5, XK group) and propofol (n=5, PI group) by intermittent bolus injection. Raw EEG was converted into 95% spectral edge frequency (SEF) and median frequency (MF) through fast fourier transformation (FFT) method. 95% SEF value of TZ group was significantly higher (p<0.05) than the XK group from 10 minutes to 100 minutes. 95% SEF value of PI group was significantly higher (p<0.05) than the XK group from 10 minutes to 40 minutes, and significantly low (p<0.05) than XK group at 90 and 100 minutes. MF was significantly higher (p<0.05) in TZ group from 60 minutes to 100 minutes. Based on these results, using dissociative agent with ${\alpha}_2$-adrenergic agent is more potent in CNS depressed than using dissociative agent alone, and low doses of propofol has a disinhibitory effect on CNS.
Keywords
Propofol; q-EEG; SEF; MF; beagle dog;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duffy FH, Hughes JR, Miranda P, Bernard P, Cook P. Status of quantitative EEG (QEEG) in clinical practice, Clin Electroencephalogr 1994, 25, VI-XXII
2 Martinez EA. Anesthetic agents. In: Boothe DM. (ed.), Small Animal Clinical Pharmacology and Therapeutics. p. 427. Saunders, Philadelphia, 2001
3 Vachon P, Dupras J, Prout R, Blais D. EEG Recordings in anesthetized rabbits: Comparison of ketamine-midazolam and telazol with or without xylazine. Contemp Top Lab Anim Sci 1999, 38, 57-61
4 Church J, Lodge D. N-methyl-d-aspartate(NMDA) antagonism is central to the actions of ketamine and other phencyclidine receptor ligands. In: Domino EG. (ed.), Status of ketamine in anesthesiology. p. 501. NPP books, Ann Arbor, 1990
5 Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurons. Br J Pharma 1991, 104, 619-628   DOI   ScienceOn
6 Plumb DC. Veterinary Drug Handbook. 4th ed. pp. 736-737, Iowa State Press, Iowa, 2002
7 White PF. Ketamine update: its clinical uses in anesthesia. Semin Anesth 1988, 7, 113-126
8 Redding RW. Canine Electroencephalography. In: Hoerlin BF. (ed.), Canine Neurology. pp. 113-115. Saunders, Philadelphia, 1971
9 Baraka A, Aoud M. Is propofol anticonvulsant or proconvulsant? Can J Anaesth 1997, 44, 1027-1029
10 Doi M, Gajraj RJ, Mantzaridis H, Kenny GN. Relationship between calculated blood concentration of propofol and electrophysiological variables during emergence from anaesthesia: comparison of bispectral index, spectral edge frequency, median frequency and auditory evoked potential index. Br J Anaesth 1997, 78, 180-184   DOI   ScienceOn
11 Greene SA, Benson GJ, Tranquilli WJ, Grimm KA. Relationship of canine bispectral index to multiples of sevoflurane minimal alveolar concentration, using patch or subdermal electrodes. Comp Med 2002, 52, 424-428
12 Mysinger PW, Redding RW, Vaughan JT, Purohit RC, Holladay JA. Electroencephalographic patterns of clinically normal, sedated, and tranquilized newborn foals and adult horses. Am J Vet Res 1985, 46, 36-41
13 Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, Hajj-Ali N, Backman SB, Evans AC. Brain mechanisms of propofol-induced loss of consciousness in humans: a position emission tomographic study. J Neuro Sci 1999, 19, 5506-5513
14 Bergamasco L, Accatino A, Priano L, Neiger-Aeschbacher G, Cizinauskas S, Jaggy A. Quantitative electroencephalographic findings in beagles anaesthetized with propofol. Vet J 2003, 166, 58-66   DOI   ScienceOn
15 Kearse LA. Jr., Roscow C, Zaslavsky A, Connors P, Dershwitz M, Denman W. Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis. Anesthesiology 1988, 88, 25-34
16 Schwender D, Daunderer M, Mulzer S, Klasing S, Finsterer U, Peter K. Spectral edge frequency of the electroencephalogram to monitor 'depth' of anaesthesia with isoflurane or propofol. Br J Anaesth 1996, 77, 179-184   DOI   ScienceOn
17 Steiss JE. A survey of current techniques in veterinary electrodiagnosis: EEG, spinal evoked and brain stem auditory evoked potential recording. Vet Res Commun 1988, 12, 281-288   DOI   ScienceOn
18 Tung A, Bluhm B, Mendelson WB. Sleep inducing effects of propofol microinjection into the medial preoptic area are blocked by flumazenil. Brain Res 2001, 908, 155-160   DOI   ScienceOn
19 Seifert HA, Blouin RT, Conard PF, Gross JB. Sedative doses of propofol increase beta activity of the processed electroencephalogram. Anesth Analg 1993, 76, 976-978
20 Liu J, Singh H, White PF. Electroencephalogram bispectral analysis predicts the depth of midazolaminduced sedation. Anesthesiology 1996, 84, 64-69   DOI   ScienceOn
21 Nieuwenhuijs D, Coleman EL, Douglas NJ, Drummond GB, Dahan A. Bispectral index values and spectral edge frequency at different stages of physiologic sleep. Anesth Analg 2002, 94, 125-129   DOI   ScienceOn
22 Clark DL, Rosner BS. Neurophysiologic effects of general anesthetics. I. The electroencephalogram and sensory evoked response in human. Anesthesiology 1973, 38, 564-582   DOI   ScienceOn
23 Itamoto K, Taura Y, Wada N, Takuma T, Une S, Nakaichi M, Hikasa Y. Quantitative electroencephalography of medetomidine, medetomidine-midazolam and medetomidine-midazolam-butorphanol in dogs. J Vet Med 2002, 49, 169-172   DOI   ScienceOn
24 Purohit RC, Mysinger PW, Redding RW. Effects of xylazine and ketamine hydrochloride on the electroencephalogram and the electrocardiogram in the horse. Am J Vet Res 1981, 42, 615-619
25 Daube JR, Harper CM, Litchy WJ, Sharbrough FW. Intraoperative monitoring. In: Daly DD, Pedley TA. (eds.), Current Practice of Clinical Electroencephalography. pp. 739-779, Raven Press, New York, 1990