Browse > Article
http://dx.doi.org/10.4070/kcj.2015.45.4.266

Diabetic Cardiomyopathy; Summary of 41 Years  

Yilmaz, Samet (Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic)
Canpolat, Ugur (Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic)
Aydogdu, Sinan (Turkey Yuksek Ihtisas Education and Research Hospital, Cardiology Clinic)
Abboud, Hanna Emily (Division of Nephrology, University of Texas Health Science Center)
Publication Information
Korean Circulation Journal / v.45, no.4, 2015 , pp. 266-272 More about this Journal
Abstract
Patients with diabetes have an increased risk for development of cardiomyopathy, even in the absence of well known risk factors like coronary artery disease and hypertension. Diabetic cardiomyopathy was first recognized approximately four decades ago. To date, several pathophysiological mechanisms thought to be responsible for this new entity have also been recognized. In the presence of hyperglycemia, non-enzymatic glycosylation of several proteins, reactive oxygen species formation, and fibrosis lead to impairment of cardiac contractile functions. Impaired calcium handling, increased fatty acid oxidation, and increased neurohormonal activation also contribute to this process. Demonstration of left ventricular hypertrophy, early diastolic and late systolic dysfunction by sensitive techniques, help us to diagnose diabetic cardiomyopathy. Traditional treatment of heart failure is beneficial in diabetic cardiomyopathy, but specific strategies for prevention or treatment of cardiac dysfunction in diabetic patients has not been clarified yet. In this review we will discuss clinical and experimental studies focused on pathophysiology of diabetic cardiomyopathy, and summarize diagnostic and therapeutic approaches developed towards this entity.
Keywords
Diabetic cardiomyopathies; Heart failure; Diabetes mellitus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis:epidemiology, pathophysiology, and management. JAMA 2002;287:2570-81.   DOI
2 Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972;30:595-602.   DOI
3 Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008;121:748-57.   DOI
4 Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy--fact or fiction? Herz 2011;36:102-15.   DOI
5 From AM, Leibson CL, Bursi F, et al. Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med 2006;119:591-9.   DOI
6 Rutter MK, Parise H, Benjamin EJ, et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 2003;107:448-54.   DOI
7 Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 2000;101:2271-6.   DOI
8 Velagaleti RS, Gona P, Chuang ML, et al. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: the Framingham Heart Study. Circ Cardiovasc Imaging 2010;3:257-63.   DOI
9 Palmieri V, Capaldo B, Russo C, et al. Uncomplicated type 1 diabetes and preclinical left ventricular myocardial dysfunction: insights from echocardiography and exercise cardiac performance evaluation. Diabetes Res Clin Pract 2008;79:262-8.   DOI
10 Huisamen B, van Zyl M, Keyser A, Lochner A. The effects of insulin and beta-adrenergic stimulation on glucose transport, glut 4 and PKB activation in the myocardium of lean and obese non-insulin dependent diabetes mellitus rats. Mol Cell Biochem 2001;223:15-25.   DOI
11 Cay S, Ozturk S, Biyikoglu SF, Atak R, Balbay Y, Aydogdu S. Association of aortic pressures with fasting plasma glucose in patients with and without impaired fasting glucose. Blood Press 2008;17:164-9.   DOI
12 Paulus WJ, Tschöpe C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007;28:2539-50.   DOI
13 Brooks BA, Franjic B, Ban CR, et al. Diastolic dysfunction and abnormalities of the microcirculation in type 2 diabetes. Diabetes Obes Metab 2008;10:739-46.   DOI
14 Shivalkar B, Dhondt D, Goovaerts I, et al. Flow mediated dilatation and cardiac function in type 1 diabetes mellitus. Am J Cardiol 2006;97:77-82.   DOI
15 Adal E, Koyuncu G, Aydin A, Celebi A, Kavunoglu G, Cam H. Asymptomatic cardiomyopathy in children and adolescents with type 1 diabetes mellitus: association of echocardiographic indicators with duration of diabetes mellitus and metabolic parameters. J Pediatr Endocrinol Metab 2006;19:713-26.
16 von Bibra H, St John Sutton M. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia 2010;53:1033-45.   DOI
17 Jellis CL, Stanton T, Leano R, Martin J, Marwick TH. Usefulness of at rest and exercise hemodynamics to detect subclinical myocardial disease in type 2 diabetes mellitus. Am J Cardiol 2011;107:615-21.   DOI
18 Di Bonito P, Moio N, Cavuto L, et al. Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med 2005;22:1720-5.   DOI
19 Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 2002;283:976-82.   DOI
20 Bella JN, Devereux RB, Roman MJ, et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am J Cardiol 2001;87:1260-5.   DOI
21 Christoffersen C, Bollano E, Lindegaard ML, et al. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 2003;144:3483-90.   DOI
22 Pereira L, Matthes J, Schuster I, et al. Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 2006;55:608-15.   DOI
23 Shishehbor MH, Hoogwerf BJ, Schoenhagen P, et al. Relation of hemoglobin A1c to left ventricular relaxation in patients with type 1 diabetes mellitus and without overt heart disease. Am J Cardiol 2003;91:1514-7.   DOI
24 Malhotra A, Sanghi V. Regulation of contractile proteins in diabetic heart. Cardiovasc Res 1997;34:34-40.   DOI
25 Amin AH, El-Missiry MA, Othman AI. Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis. Eur J Pharmacol 2015;747:166-73.   DOI
26 Jweied EE, McKinney RD, Walker LA, et al. Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 2005;289:2478-83.   DOI
27 Falcão-Pires I, Palladini G, Gonçalves N, et al. Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 2011;106:801-14.   DOI
28 Rijzewijk LJ, van der Meer RW, Smit JW, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008;52:1793-9.   DOI
29 Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 2007;93:903-7.   DOI
30 Turko IV, Li L, Aulak KS, Stuehr DJ, Chang YJ, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 2003;278:33972-7.   DOI
31 Cai L, Wang J, Li Y, et al. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 2005;54:1829-37.   DOI
32 Maalouf RM, Eid AA, Gorin YC, et al. Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol 2012;302:C597-604.   DOI
33 Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 2004;63:423-32.   DOI
34 Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 2006;55:798-805.   DOI
35 Thomas CM, Yong QC, Rosa RM, et al. Cardiac-specific suppression of NF--${\kappa}B$ signaling prevents diabetic cardiomyopathy via inhibition of the reninangiotensin system. Am J Physiol Heart Circ Physiol 2014;307:H1036-45.   DOI
36 Feliers D, Gorin Y, Ghosh-Choudhury G, Abboud HE, Kasinath BS. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. Am J Physiol Renal Physiol 2006;290:F927-36.   DOI
37 Berg TJ, Snorgaard O, Faber J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 1999;22:1186-90.   DOI
38 Yoshida N, Okumura K, Aso Y. High serum pentosidine concentrations are associated with increased arterial stiffness and thickness in patients with type 2 diabetes. Metabolism 2005;54:345-50.   DOI
39 Lapolla A, Piarulli F, Sartore G, et al. Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease. Diabetes Care 2007;30:670-6.   DOI
40 Nożyński J, Zakliczyński M, Konecka-Mrówka D, et al. Advanced glycation end-products in myocardium-supported vessels: effects of heart failure and diabetes mellitus. J Heart Lung Transplant 2011;30:558-64.   DOI
41 Frank PG, Lisanti MP. ICAM-1: role in inflammation and in the regulation of vascular permeability. Am J Physiol Heart Circ Physiol 2008;295:H926-7.   DOI
42 Nielsen JM, Kristiansen SB, Norregaard R. et al. Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail 2009;11:638-47.   DOI
43 Wu MS, Liang JT, Lin YD, Wu ET, Tseng YZ, Chang KC. Aminoguanidine prevents the impairment of cardiac pumping mechanics in rats with streptozotocin and nicotinamide-induced type 2 diabetes. Br J Pharmacol 2008;154:758-64.
44 Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 2005;109:143-59.   DOI
45 Dobrin JS, Lebeche D. Diabetic cardiomyopathy: signaling defects and therapeutic approaches. Expert Rev Cardiovasc Ther 2010;8:373-91.   DOI
46 Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 2010;88:229-40.   DOI
47 Kiencke S, Handschin R, von Dahlen R, et al. Pre-clinical diabetic cardiomyopathy: prevalence, screening, and outcome. Eur J Heart Fail 2010;12:951-7.   DOI
48 von Bibra H, Hansen A, Dounis V, Bystedt T, Malmberg K, Ryden L. Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart 2004;90:1483-4.   DOI
49 Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373:1765-72.   DOI
50 He YM, Yang XJ, Zhao X, et al. ${\beta}$-Blockers in heart failure: benefits of ${\beta}$-blockers according to varying male proportions of study patients. Clin Cardiol 2012;35:505-11.   DOI