Browse > Article
http://dx.doi.org/10.4070/kcj.2014.44.4.218

The Role of MicroRNAs in Vascular Diseases; Smooth Muscle Cell Differentiation and De-Differentiation  

Hwang, Ki-Chul (Severance Biomedical Science Institute, Cardiovascular Research Institute, Yonsei University College of Medicine)
Publication Information
Korean Circulation Journal / v.44, no.4, 2014 , pp. 218-219 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009;460:705-10.
2 Cheng Y, Liu X, Yang J, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 2009;105:158-66.   DOI
3 Kee HJ, Kim GR, Cho SN, et al. miR-18a-5p microRNA increases vascular smooth muscle cell differentiation by downregulating syndecan4. Korean Circ J 2014;44:255-63.   DOI
4 Cizmeci-Smith G, Langan E, Youkey J, Showalter LJ, Carey DJ. Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997;17:172-80.   DOI   ScienceOn
5 Xie C, Zhang J, Chen YE. MicroRNA and vascular smooth muscle cells. Vitam Horm 2011;87:321-39.   DOI
6 Li P, Zhu N, Yi B, et al. MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res 2013;113:1117-27.   DOI
7 Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 2005;280:9719-27.   DOI
8 McDonald OG, Owens GK. Programming smooth muscle plasticity with chromatin dynamics. Circ Res 2007;100:1428-41.   DOI
9 Wang DZ, Olson EN. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr Opin Genet Dev 2004;14:558-66.   DOI   ScienceOn
10 Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 2004;428:185-9.   DOI
11 Cao D, Wang Z, Zhang CL, et al. Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Mol Cell Biol 2005;25:364-76.   DOI
12 McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 2006;116:36-48.
13 Boehm M, Slack FJ. MicroRNA control of lifespan and metabolism. Cell Cycle 2006;5:837-40.   DOI
14 Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007;26:133-7.   DOI   ScienceOn
15 Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007;32:189-97.   DOI
16 Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol 2013;425:3582-600.   DOI
17 Albinsson S, Sward K. Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease. Pharmacol Res 2013;75:28-36.   DOI
18 Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004;84:767-801.   DOI   ScienceOn