Browse > Article
http://dx.doi.org/10.12989/cme.2021.3.2.089

Deformation in a homogeneous isotropic thermoelastic solid with multi-dual-phase-lag heat & two temperature using modified couple stress theory  

Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University)
Kaur, Harpreet (Department of Basic and Applied Sciences, Punjabi University)
Publication Information
Composite Materials and Engineering / v.3, no.2, 2021 , pp. 89-106 More about this Journal
Abstract
The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to inclined load with two temperatures with multi-dual-phase-lag heat transfer. Uniformly distributed and linearly distributed forces have been applied to find the functionality of the problem. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature and inclined load is depicted graphically on the resulted quantities.
Keywords
modified couple stress theory; two temperature; isotropic solid; inclined load; Laplace and Fourier transform; couple stress moment tensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Green A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969.   DOI
2 Abbas, I.A. and Zenkour, A.M. (2014), "Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times", J. Comput. Theor. Nanosci., 11(1), 1-7. https://doi.org/10.1166/jctn.2014.3309.   DOI
3 Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat. Transfer Res., 50(16), 1539-1560. https://doi.org/10.1615/HeatTransRes.2019025622.   DOI
4 Yang, Z. and He, D. (2017) "Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory", Results Phys., 7, 3778-3787. https://doi.org/10.1016/j.rinp.2017.09.026.   DOI
5 Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Ration. Mech. An., 16, 51-78.   DOI
6 Nateghi A, Salamat-talab, M., Rezapour, J. and Daneshian, B. (2012), "Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory", Appl. Math. Model., 36(10), 4971-4987. https://doi.org/10.1016/j.apm.2011.12.035.   DOI
7 Nowacki, W. (1986), Theory of Asymmetric Elasticity, Pergamon Press, Headington Hill Hall, Oxford, U.K.
8 Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11),2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.   DOI
9 Othman, M.I.A., Atwa, S.Y., Jahangir, A. and Khan, A. (2013), "Generalized magneto-thermo-microstretch elastic solid under gravitational effect with energy dissipation" Multidisciplin. Model. Mater. Struct., 9(2), 145-176. https://doi.org/10.1108/MMMS-01-2013-0005.   DOI
10 Press W.H., Teukolsky S.A., Vellerling W.T. and Flannery B.P. (1986), Numerical Recipe, Cambridge University Press, Cambridge, U.K.
11 Sherief, H.H. and Saleh H. (2005), "A half-space problem in the theory of generalized thermoelastic diffusion", Int. J. Solids Struct., 42(15), 4484-4493. https://doi.org/10.1016/0377-0427(84)90075-X.   DOI
12 Tsiatas, G.C. and Yiotis, A.J. (2010), A Microstructure-Dependent Orthotropic Plate Model based on a Modified Couple Stress Theory, in Recent Developments in Boundary Element Methods, WIT Press, Southhampton, Boston, U.S.A., 295-308.
13 Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transfer, 117(1), 8-16. https://doi.org/10.1115/1.2822329.   DOI
14 Vlase, S., Marin, M., O chsner, A. and Scutaru, M.L. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Continuum Mechanics and Thermodynamics, 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.   DOI
15 Lata, P. and Kaur, H. (2019a), "Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory", Coupled Syst. Mech., 8(6), 501-522. https://doi.org/10.12989/csm.2019.8.6.501.   DOI
16 Biot, M.A. (1965), "Theory of stress-strain relations in an isotropic viscoelasticity, and relaxation phenomena", J. Appl. Phys., 25(11), 1385-1391. https://doi.org/10.1063/1.1721573.   DOI
17 Chen, S. and Wang, T. (2001), "Strain gradient theory with couple stress for crystalline solids", Eur. J. Mech. A-Solid., 20(5), 739-756. https://doi.org/10.1016/S0997-7538(01)01168-8.   DOI
18 Marin, M. (2010a), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.   DOI
19 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
20 Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method", Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8.   DOI
21 Mindlin, R. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. An., 11, 415-448.   DOI
22 Mindlin, R. and Eshel, N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solids Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.   DOI
23 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stress in linear elasticity", Arch. Ration. Mech. An., 11 (1), 415-448. https://doi.org/10.1007/BF00253946.   DOI
24 Bhatti, M.M., Khalique, C.M., Beg, T.A., Beg, O.A. and Kadir, A. (2020b), "Numerical study of slip and radiative effects on magnetic Fe 3 O 4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion", Mod. Phys. Lett. B, 34(2), 2050026. https://doi.org/10.1142/S0217984920500268.   DOI
25 Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84(3), 323-341. https://doi.org/10.1007/s00419-013-0802-1.   DOI
26 Chen, W. and Si, J. (2013), "A model of composite laminated beam based on the global-local theory and new modified couple-stress theory", Compos. Struct., 103, 99-107. https://doi.org/10.1016/j.compstruct.2013.03.021.   DOI
27 Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
28 Guo, J., Chen, J. and Pan, E. (2016), "Size-dependent behavior of functionally graded anisotropic composite plates" Int. J. Eng. Sci., 106, 110-124. https://doi.org/10.1016/j.ijengsci.2016.05.008.   DOI
29 Ke, L. and Wang, Y. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008.   DOI
30 Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Philos. T. R. Soc. B, 67, 17-29.
31 Asghari, M., Ahmadian, M.T. Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size-dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006.   DOI
32 Eringen, A.C. (1999), "Theory of micropolar elasticity", Microcontinuum Field Theories, Springer, New York, U.S.A., 101-248.
33 Kumar, R., Devi, S. and Sharma, V. (2017), "Effect of Hall current and rotation in modified couple stress generalized thermoelastic half space due to ramp type heating", J. Solid Mech., 9(3), 527-542.
34 Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to inclined load in transversely isotropic magnatothermoelastic medium with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
35 Lazar, M., Maugin, G.A. and Aifantis, E.C. (2005), "On dislocations in a special class of generalized elasticity", Physica B, 242(12), 2365-2390. https://doi.org/10.1002/pssb.200540078.   DOI
36 Lata, P. (2018a), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.   DOI
37 Lata, P. (2018b), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.   DOI
38 Lata, P. and Kaur, H. (2019b), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain, Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.   DOI
39 Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermo-elasticity", J. Mech. Phys. Sol., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.   DOI
40 Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
41 Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Archivum Mathematicum, 33(4), 301-308.
42 Marin, M. (2010b), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal. RWA, 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.   DOI
43 Voigt, W. (1887), Theoretische Studien uber die Elasticit atsverh altnisse der Krystalle(Theoretical studies on the elasticity relationships of crystals), Abhandlungen der Koniglichen Gesellschaft der Wissenschaften in Gottingen, Dieterichsche Verlags-Buchhandlung.
44 Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.   DOI
45 Zenkour A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space due to a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137, 109213. https://doi.org/10.1016/j.jpcs.2019.109213.   DOI
46 Zihao, Y. and He, D. (2019), "A microstructure-dependent plate model for orthotropic functionally graded micro-plates", Mech. Adv. Mater. Struct., 26(14), 26, 1218-1225. https://doi.org/10.1080/15376494.2018.1432794.   DOI
47 Arif, S.M., Biwi, M. and Jahangir, A. (2018), "Solution of algebraic lyapunov equation on positive-definite hermitian matrices by using extended Hamiltonian algorithm", Comput. Mater. Continua, 54(1), 181-195.
48 Bhatti, M.M., Elelamy, A.F., Sait, M.S. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: Application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532. https://doi.org/10.3390/sym12040532.   DOI
49 Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020c), "Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 95. https://doi.org/10.3389/fphy.2020.00095.   DOI
50 Chen, W. and Li, X. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2.   DOI
51 Chen, W., Xu, M. and Li, L. (2012), "A model of composite laminated Reddy plate based on new modified couple stress theory", Compos. Struct., 94(7), 2143-2156. https://doi.org/10.1016/j.compstruct.2012.02.009.   DOI