Browse > Article
http://dx.doi.org/10.12989/acc.2022.14.1.015

Application of machine learning methods for predicting the mechanical properties of rubbercrete  

Miladirad, Kaveh (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
Golafshani, Emadaldin Mohammadi (Department of Civil Engineering, Monash University)
Safehian, Majid (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
Sarkar, Alireza (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
Publication Information
Advances in concrete construction / v.14, no.1, 2022 , pp. 15-34 More about this Journal
Abstract
The use of waste rubber in concrete can reduce natural aggregate consumption and improve some technical properties of concrete. Although there are several equations for estimating the mechanical properties of concrete containing waste rubber, limited numbers of machine learning-based models have been proposed to predict the mechanical properties of rubbercrete. In this study, an extensive database of the mechanical properties of rubbercrete was gathered from a comprehensive survey of the literature. To model the mechanical properties of rubbercrete, M5P tree and linear gene expression programming (LGEP) methods as two machine learning techniques were employed to achieve reliable mathematical equations. Two procedures of input variable selection were considered in this study. The crucial component ratios of rubbercrete and concrete age were assumed as the input variables in the first procedure. In contrast, the volumes of the coarse and fine waste rubber and the compressive strength of concrete without waste rubber were considered the second procedure of the input variables. The results show that the models obtained by LGEP are more accurate than those achieved by the M5P model tree and existing traditional equations. Besides, the volumes of the coarse and fine waste rubber and the compressive strength of concrete without waste rubber are better predictors of the mechanical properties of rubbercrete compared to the first procedure of input variable selection.
Keywords
linear gene expression programming; M5P model tree; machine learning; mechanical properties; rubbercrete;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015   DOI
2 Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)   DOI
3 Li, H.L., Xu, Y., Chen, P.Y., Ge, J.J. and Wu, F. (2019), "Impact energy consumption of high-volume rubber concrete with silica fume", Adv. Civil Eng. https://doi.org/10.1155/2019/1728762   DOI
4 Mendis, A.S.M., Al-Deen, S. and Ashraf, M. (2017), "Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions", Constr. Build. Mater., 134, 354-366. https://doi.org/10.1016/j.conbuildmat.2017.01.125   DOI
5 Gregori, A., Castoro, C., Marano, G.C. and Greco, R. (2019), "Strength reduction factor of concrete with recycled rubber aggregates from tires", J. Mater. Civil Eng., 31(8), 04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783   DOI
6 Grinys, A., Sivilevicius, H. and Dauksys, M. (2012), "Tyre rubber additive effect on concrete mixture strength", J. Civil Eng., 18(3), 393-401. Manage. https://doi.org/10.3846/13923730.2012.693536   DOI
7 Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014   DOI
8 Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct./Materiaux et Constructions, 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0   DOI
9 Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085   DOI
10 Mohammed, B.S. and Azmi, N.J. (2014), "Strength reduction factors for structural rubbercrete", Front. Struct. Civil Eng., 8(3), 270-281. https://doi.org/10.1007/s11709-014-0265-7   DOI
11 Nazari, A. and Torgal, F.P. (2013), "Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP", Expert Syst. Applicat., 40(14), 5427-5438. https://doi.org/10.1016/j.eswa.2013.04.014   DOI
12 Nielsen, M.P. and Hoang, L.C. (2016), Limit Analysis and Concrete Plasticity, (3rd edition).
13 Noaman, A.T., Abu Bakar, B.H., Akil, H.M. and Alani, A.H. (2017), "Fracture characteristics of plain and steel fibre reinforced rubberized concrete", Constr. Build. Mater., 152, 414-423. https://doi.org/10.1016/j.conbuildmat.2017.06.127   DOI
14 Ozbay, E., Lachemi, M. and Sevim, U.K. (2011), "Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag", Mater. Struct./Materiaux et Constructions, 44(7), 1297-1307. https://doi.org/10.1617/s11527-010-9701-x   DOI
15 Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)   DOI
16 Behnood, A. and Golafshani, E.M. (2020), "Machine learning study of the mechanical properties of concretes containing waste foundry sand", Constr. Build. Mater., 243, 118152. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118152   DOI
17 Behnood, A., Behnood, V., Modiri Gharehveran, M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061   DOI
18 Carroll, J.C. and Helminger, N. (2016), "Fresh and hardened properties of fiber-reinforced rubber concrete", J. Mater. Civil Eng., 28(7), 04016027. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001541   DOI
19 Feng, W., Liu, F., Yang, F., Li, L. and Jing, L. (2018), "Experimental study on dynamic split tensile properties of rubber concrete", Constr. Build. Mater., 165, 675-687. https://doi.org/10.1016/j.conbuildmat.2018.01.073   DOI
20 Feng, W., Liu, F., Yang, F., Li, L., Jing, L., Chen, B. and Yuan, B. (2019), "Experimental study on the effect of strain rates on the dynamic flexural properties of rubber concrete", Constr. Build. Mater., 224, 408-419. https://doi.org/10.1016/j.conbuildmat.2019.07.084   DOI
21 Sukontasukkul, P. and Tiamlom, K. (2012), "Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size", Constr. Build. Mater., 29, 520-526. https://doi.org/10.1016/j.conbuildmat.2011.07.032   DOI
22 Gesoglu, M., Guneyisi, E. and Ozturan, T. (2005), "Use of recycled tyre rubber as aggregates in silica fume concrete", Proceedings of the International Conference on Achieving Sustainability in Construction.
23 Quinlan, J.R. (1992), "Learning with continuous classes: Constructing Model Trees", Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, Australia, November. https://doi.org/10.1.1.34.885
24 Rashid, K., Yazdanbakhsh, A. and Rehman, M.U. (2019), "Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material", J. Cleaner Product., 224, 396-410. https://doi.org/10.1016/j.jclepro.2019.03.197   DOI
25 Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)   DOI
26 Roychand, R., Gravina, R.J., Zhuge, Y., Ma, X., Youssf, O. and Mills, J.E. (2020), "A comprehensive review on the mechanical properties of waste tire rubber concrete", Constr. Build. Mater., 237, 117651. https://doi.org/10.1016/j.conbuildmat.2019.117651   DOI
27 Shahmansouri, A.A., Akbarzadeh Bengar, H. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326   DOI
28 Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108   DOI
29 Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and nondestructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, Int. J., 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021   DOI
30 Thomas, B.S. and Gupta, R.C. (2015), "Long term behaviour of cement concrete containing discarded tire rubber", J. Cleaner Product., 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072   DOI
31 Thomas, B.S. and Gupta, R.C. (2016), "Properties of high strength concrete containing scrap tire rubber", J. Cleaner Product., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019   DOI
32 Golafshani, E.M. and Behnood, A. (2018), "Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete", Appl. Soft Comput. J., 64, 377-400. https://doi.org/10.1016/j.asoc.2017.12.030   DOI
33 Bompa, D.V., Elghazouli, A.Y., Xu, B., Stafford, P.J. and Ruiz-Teran, A.M. (2017), "Experimental assessment and constitutive modelling of rubberised concrete materials", Constr. Build. Mater., 137, 246-260. https://doi.org/10.1016/j.conbuildmat.2017.01.086   DOI
34 Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074   DOI
35 Thomas, B.S., Kumar, S., Mehra, P., Gupta, R.C., Joseph, M. and Csetenyi, L.J. (2016), "Abrasion resistance of sustainable green concrete containing waste tire rubber particles", Constr. Build. Mater., 124, 906-909. https://doi.org/10.1016/j.conbuildmat.2016.07.110   DOI
36 Eldin, N.N. and Senouci, A.B. (1994), "Measurement and prediction of the strength of rubberized concrete", Cement Concrete Compos., 16(4), 287-298. https://doi.org/10.1016/0958-9465(94)90041-8   DOI
37 Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", ArXiv Preprint Cs/0102027.
38 Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101, 1113-1121. https://doi.org/10.1016/j.conbuildmat.2015.10.030   DOI
39 Gholampour, A., Gandomi, A.H. and Ozbakkaloglu, T. (2017), "New formulations for mechanical properties of recycled aggregate concrete using gene expression programming", Constr. Build. Mater., 130, 122-145. https://doi.org/10.1016/j.conbuildmat.2016.10.114   DOI
40 Golafshani, E.M. and Behnood, A. (2019), "Estimating the optimal mix design of silica fume concrete using biogeography-based programming", Cement Concrete Compos., 96, 95-105. https://doi.org/10.1016/j.cemconcomp.2018.11.005   DOI
41 Golafshani, E.M., Arashpour, M. and Behnood, A. (2022), "Predicting the compressive strength of green concretes using Harris hawks optimization-based data-driven methods", Constr. Build. Mater., 318, 125944. https://doi.org/10.1016/j.conbuildmat.2021.125944   DOI
42 Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Sipos, T.K. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Materials, 12(4), 561. https://doi.org/10.3390/ma12040561   DOI
43 Loh, W.Y. (2011), "Classification and regression trees", Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov., 1(1), 14-23. https://doi.org/10.1002/widm.8   DOI
44 Nekoei, M., Moghaddas, S.A., Golafshani, E.M. and Gandomi, A.H. (2021), "Introduction of ABCEP as an automatic programming method", Inform. Sci., 545, 575-594. https://doi.org/10.1016/j.ins.2020.09.020   DOI
45 Abd-Elaal, E.S., Araby, S., Mills, J.E., Youssf, O., Roychand, R., Ma, X., Zhuge, Y. and Gravina, R.J. (2019), "Novel approach to improve crumb rubber concrete strength using thermal treatment", Constr. Build. Mater., 229, 116901. https://doi.org/10.1016/j.conbuildmat.2019.116901   DOI
46 Bala, A., Sehgal, V.K. and Saini, B. (2014), Effect of Fly ash and Waste Rubber on Properties of Concrete Composite. Www.Crl.Issres.Net
47 Golafshani, E.M., Arashpour, M. and Kashani, A. (2021), "Green mix design of rubbercrete using machine learning-based ensemble model and constrained multi-objective optimization", J. Cleaner Product., 327, 129518. https://doi.org/10.1016/j.jclepro.2021.129518   DOI
48 Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020b), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478   DOI
49 Batayneh, M.K., Marie, I. and Asi, I. (2008), "Promoting the use of crumb rubber concrete in developing countries", Waste Manag., 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035   DOI
50 Behnood, A. and Daneshvar, D. (2020), "A machine learning study of the dynamic modulus of asphalt concretes: An application of M5P model tree algorithm", Constr. Build. Mater., 262, 120544. https://doi.org/10.1016/j.conbuildmat.2020.120544   DOI
51 Iqbal, M.F., Liu, Q. feng, Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/10.1016/j.jhazmat.2019.121322   DOI
52 Toma, I.O., Taranu, N., Banu, O.M., Budescu, M., Mihai, P. and Taran, R.G. (2015), "The effect of the aggregate replacement by waste tyre rubber crumbs on the mechanical properties of concrete", Revista Romana de Materiale/Roman. J. Mater., 45(4), 394-401.
53 Wang, J., Dai, Q., Guo, S. and Si, R. (2019), "Study on rubberized concrete reinforced with different fibers", ACI Mater. J., 116(2). https://doi.org/10.14359/51712266   DOI
54 Wong, S.F. and Ting, S.K. (2009), "Use of recycled rubber tires in normaland high-strength concretes", ACI Mater. J., 106(4), 325. https://doi.org/10.14359/56652   DOI
55 Guneyisi, E., Gesoglu, M. and Ozturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005   DOI
56 Ashrafian, A., Gandomi, A.H., Rezaie-Balf, M. and Emadi, M. (2020), "An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement", Measurement: J. Int. Measure. Confed., 152, 107309. https://doi.org/10.1016/j.measurement.2019.107309   DOI
57 Balaha, M.M., Badawy, A.A.M. and Hashish, M. (2007), "Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes", Indian J. Eng. Mater. Sci., pp. 427-435.
58 Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fiber concrete with and without silica fume", J. Cleaner Product., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081   DOI
59 Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measurement, 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870   DOI
60 Hossain, F.M.Z., Shahjalal, M., Islam, K., Tiznobaik, M. and Alam, M.S. (2019), "Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber", Constr. Build. Mater., 225, 983-996. https://doi.org/10.1016/j.conbuildmat.2019.07.245   DOI
61 Jalal, M., Arabali, P., Grasley, Z., Bullard, J.W. and Jalal, H. (2020a), "Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete", J. Cleaner Product., 273, 122960. https://doi.org/10.1016/j.jclepro.2020.122960   DOI
62 Kandiri, A., Golafshani, E.M. and Behnood, A. (2020), "Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm", Constr. Build. Mater., 248, 118676. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118676   DOI
63 Grdic, Z., Toplicic-Curcic, G., Ristic, N., Grdic, D. and Mitkovic, P. (2014), "Hydro-abrasive resistance and mechanical properties of rubberized concrete", J. Croatian Assoc. Civil Engr., 66(01.), 11-20. https://doi.org/10.14256/jce.910.2013   DOI
64 Zhang, Z., Paul, S.C., Panda, B., Huang, Y., Garg, A., Zhang, Y., Garg, A. and Zhang, W. (2020), "Assessment of flexural and splitting strength of steel fiber reinforced concrete using automated neural network search", Adv. Concrete Constr., Int. J., 10(1), 81-92. https://doi.org/10.12989/acc.2020.10.1.081.   DOI
65 Stallings, K.A., Durham, S.A. and Chorzepa, M.G. (2019), "Effect of cement content and recycled rubber particle size on the performance of rubber-modified concrete", Int. J. Sustain. Eng., 12(3), 189-200. https://doi.org/10.1080/19397038.2018.1505971   DOI
66 Xie, Y., Su, X.R., Wang, H.X., Luo, D.M. and Zhou, Y.L. (2019), "Experimental analysis of the toughness mechanism of rubber concrete", In: IOP Conference Series: Materials Science and Engineering, Vol. 504, No. 1, p. 012041. https://doi.org/10.1088/1757-899X/504/1/012041   DOI
67 Youssf, O., Elgawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007   DOI
68 Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2017), "Analytical modeling of the main characteristics of crumb rubber concrete", Am. Concrete Inst., ACI Special Publication, 314, 1-18.