Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.4.339

Prediction of the compressive and tensile strength of HPC concrete with fly ash and micro-silica using hybrid algorithms  

Yin, Hang (Liaoning Technical University)
Liu, Shuxian (Liaoning Technical University)
Lu, Shasha (Liaoning Technical University)
Nie, Wei (Liaoning Technical University)
Jia, Baoxin (Liaoning Technical University)
Publication Information
Advances in concrete construction / v.12, no.4, 2021 , pp. 339-354 More about this Journal
Abstract
Evaluating the impact of fly ash (FA) and micro-silica (MS) on the tensile (TS) and compressive strength (CS) of concrete in different ages provokes to find the effective parameters in predicting the CS and TS, which not only could be usable in the practical works but also is extensible in the future analysis. In this study, in order to evaluate the effective parameters in predicting the CS and TS of concrete containing admixtures and to present a fitted equation, the multivariate adaptive regression splines (MARS) method has been used, which could find a relationship between independent and dependent variables. Next, for optimizing the output equation, hybrid genetic algorithm (GA), particle swarm optimization (PSO), and grey wolf optimization (GWO) methods have been utilized to find the optimal conclusions. It could be concluded that for both predictions of CS and TS, all models have the coefficient of determination (R2) larger than 0.949 and 0.9138, respectively. Furthermore, between three hybrid algorithms, MARS-PSO could be proposed as the best model to obtain the most accuracy in the prediction of CS and TS. The usage of hybrid MARS-PSO techniques causes a noticeable improvement in the prediction procedure.
Keywords
compressive and tensile strength prediction; fly ash; GA; high strength concrete; MARS; micro-silica; PSO and GWO;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proc. Inst. Civil Eng. Geotech. Eng., 1-16. https://doi.org/10.1680/jgeen.20.00152.   DOI
2 Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.   DOI
3 Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.   DOI
4 Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017.   DOI
5 Yaprak, H., Karaci, A. and Demir, I. (2013), "Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks", Neur. Comput. Appl., 22(1), 133-141. https://doi.org/10.1007/s00521-011-0671-x.   DOI
6 Wang, C.C., Chen, T.T., Wang, H.Y. and Huang, C. (2014), "A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression", Comput. Concrete, 13(4), 531-545. http://doi.org/10.12989/cac.2014.13.4.531.   DOI
7 Zhou, J., Enming, L., Haixia, W., Chuanqi, L., Qiuqiu, Q. and Armaghani, D.J. (2019), "Random forests and cubist algorithms for predicting shear strengths of rockfill materials", Appl. Sci., 9(8), 1621. https://doi.org/10.3390/app9081621.   DOI
8 Sarkhani, B.R. and Esmaeili-falak M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.000.   DOI
9 Turk, K., Turgut, P., Karatas, M. and Benli, A. (2010), "Mechanical properties of selfcompacting concrete with silica fume/fly ash", 9th Int. Cong. Adv. Civil Eng., 27-30.
10 Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.   DOI
11 Detwiler, R.J., Bhatty, J.I. and Battacharja, S. (1996), Supplementary Cementing Materials for Use in Blended Cements. http://worldcat.org/isbn/0893121428.
12 Zelic, J., Rusic, D. and Krstulovic, R. (2004), "A mathematical model for prediction of compressive strength in cement-silica fume blends", Cement Concrete Res., 34(12), 2319-2328. https://doi.org/10.1016/j.cemconres.2004.04.015.   DOI
13 Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.   DOI
14 Babu, K.G. and Rao, G.S.N. (1994), "Early strength behavior of fly ash concretes", Cement Concrete Res., 24(2), 277-284. https://doi.org/10.1016/0008-8846(94)90053-1   DOI
15 BS EN 12390-3 (2019), Testing Hardened Concrete, Compressive Strength of Test Specimens.
16 Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X.   DOI
17 Esmaeili-Falak, M. (2017), "Effect of system's geometry on the stability of frozen wall in excavation of saturated granular soils", Ph.D. Dissertation of Philosophy, University of Tabriz.
18 Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.   DOI
19 Esmaeili-choobar, N., Esmaeili-falak, M., Roohi-hir, M. amd Keshtzad, S. (2013), "Evaluation of collapsibility potential at Talesh, Iran", EJGE, 2561-2573.
20 Faraj, R.H., Mohammed, A.A., Mohammed, A., Omer, K.M. and Ahmed, H.U. (2021), "Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages," Eng. Comput., 1-24. https://doi.org/10.1007/s00366-021-01385-9.   DOI
21 Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.   DOI
22 Felekoglu, B., Turkel, S. and Baradan, B. (2007), "Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete", Build. Environ., 42(4), 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012.   DOI
23 Ahmed, H.U., Mohammed, A.S., Mohammed, A.A. and Faraj, R.H. (2021), "Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes", Plos One, 16(6), e0253006. https://doi.org/10.1371/journal.pone.0253006.   DOI
24 Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.   DOI
25 Azimi-Pour, M., Eskandari-Naddaf, H. and Pakzad, A. (2020), "Linear and non-linear SVM prediction for fresh properties and compressive strength of high-volume fly ash self-compacting concrete", Constr. Build. Mater., 230, 117021. https://doi.org/10.1016/j.conbuildmat.2019.117021.   DOI
26 Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061.   DOI
27 BS EN 12390-6 (2009), Testing Hardened Concrete, Tensile Splitting Strength of Test Specimens.
28 Hubertova, M. and Hela, R. (2007), "The effect of metakaolin and silica fume on the properties of lightweight self-consolidating concrete", Spec. Pub., 243, 35-48.
29 Pala, M., Ozbay, E., Oztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009.   DOI
30 Friedman, J.H. (1991), "Multivariate adaptive regression splines", Annals Statist., 1-67.
31 Kjellsen, K.O., Wallevik, O.H. and Hallgren, M. (1999), "On the compressive strength development of high-performance concrete and paste-effect of silica fume", Mater. Struct., 32(1), 63. https://doi.org/10.1007/BF02480414.   DOI
32 Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28(2), 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X.   DOI
33 Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285.   DOI
34 Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.   DOI
35 Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.   DOI
36 Cabrera, J.G. and Claisse, P.A. (1990), "Measurement of chloride penetration into silica fume concrete", Cement Concrete Compos., 12(3), 157-161. https://doi.org/10.1016/0958-9465(90)90016-Q.   DOI
37 Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078.   DOI
38 Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions", Numerische Mathematik, 31(4), 377-403. https://doi.org/10.1007/BF01404567.   DOI
39 Esmaeili-Falak, M., Sarkhani Benemaran, R. and Seifi, R. (2020), "Improvement of the Mechanical and Durability Parameters of Construction Concrete of the Qotursuyi Spa", Concrete Res., 13(2), 119-134. https://doi.org/10.22124/JCR.2020.14518.1395.   DOI
40 Adamowski, J.F. (2008), "Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross wavelet analysis", J. Hydro., 353(3-4), 247-266. https://doi.org/10.1016/j.jhydrol.2008.02.013.   DOI
41 Qiu, M., Ming, Z., Li, J., Gai, K. and Zong, Z. (2015), "Phase-change memory optimization for green cloud with genetic algorithm", IEEE Transac. Comput., 64(12), 3528-3540. https://doi.org/10.1109/TC.2015.2409857.   DOI
42 Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.   DOI
43 Muro, C., Escobedo, R., Spector, L. and Coppinger, R.P. (2011), "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations", Behav. Proc., 88(3), 192-197. https://doi.org/10.1016/j.beproc.2011.09.006.   DOI
44 Patel, P.J. (2014), "Health analysis of high performance concrete by using waste material", Ph.D. Dissertation of Philosophy, Ganpat University.
45 Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.   DOI
46 Pham, B.T., Qi, C., Ho, L.S., Nguyen-Thoi, T., Al-Ansari, N., Nguyen, M.D. and Prakash, I. (2020), "A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil", Sustain., 12(6), 2218. https://doi.org/10.3390/su12062218.   DOI
47 Liu, F., Ding, W. and Qiao, Y. (2019), "Experimental investigation on the flexural behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder", Constr. Build. Mater., 228, 116706. https://doi.org/10.1016/j.conbuildmat.2020.118000.   DOI
48 Mohamed, O.A., Syed, Z.I. and Najm, O.F. (2016), "Splitting tensile strength of sustainable self-consolidating concrete", Procedia Eng., 145, 1218-1225. http://doi.org/10.1016/j.proeng.2016.04.157.   DOI
49 Nochaiya, T., Wongkeo, W. and Chaipanich, A. (2010), "Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete", Fuel, 89(3), 768-774. https://doi.org/10.1016/j.fuel.2009.10.003.   DOI
50 Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002.   DOI
51 Zain, M.F.M., Mahmud, H.B., Ilham, A. and Faizal, M. (2002), "Prediction of splitting tensile strength of high-performance concrete", Cement Concrete Res., 32(8), 1251-1258. https://doi.org/10.1016/S0008-8846(02)00768-8.   DOI
52 Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.   DOI
53 Yu, Z., Shi, X., Zhou, J., Rao, D., Chen, X., Dong, W. and Ipangelwa, T. (2019), "Feasibility of the indirect determination of blast-induced rock movement based on three new hybrid intelligent models", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-019-00868-0.   DOI