Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.4.317

Experimental study on complete stress-strain characteristics of two kinds of green concretes  

Nguyen, Hoang Anh (Department of Rural Technology, College of Rural Development, Can Tho University)
Chang, Ta Peng (Department of Civil and Construction Engineering, National Taiwan University of Science and Technology (NTUST))
Kuo, Yu Hao (Department of Civil and Construction Engineering, National Taiwan University of Science and Technology (NTUST))
Shih, Jeng Ywan (Department of Chemical Engineering, Ming Chi University of Technology)
Publication Information
Advances in concrete construction / v.12, no.4, 2021 , pp. 317-326 More about this Journal
Abstract
The current study explores the empirical whole stress-strain curves detected from the axial compression test of the green concretes manufactured with two kinds of no-cement binders. The first one is the binder of alkali-activated material (AAM) with ground granulated blast furnace slag blending with Class F fly ash (FFA) and the second is a new hydraulic SFC binder produced by mixing ternary powders of slag (S), FFA (F), and circulating fluidized bed combustion fly ash (C). The performances of two green concretes were conducted and compared with that of the plain ordinary Portland cement (OPC) concretes with the equivalent 28-day compressive strengths graded at 30, 40, and 50 MPa. Experimental results showed that the AAM concretes had the energy absorption capacity lower than those of the SFC and OPC concretes because the descending parts of the whole stress-strain curves of the AAM concretes referred to the snap back mode different from the strain softening modes of those of the SFC and OPC concretes with the compressive strength graded at 30 or 40 MPa. Among three concretes with equivalent strength grades, the AAM concretes had the lowest elastic Young's moduli and the highest Poisson's ratios. The SFC concretes had the comparable or slightly higher elastic Young's moduli and lower Poisson's ratios than those of the OPC concretes.
Keywords
CFBC fly ash; fly ash; no-cement; stress-strain curve; slag;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Watanabe, K., Niwa, J., Yokota, H. and Iwanami, M. (2004), "Experimental study on stress-strain curve of concrete considering localized failure in compression", J. Adv. Concrete Tech., 2(3), 395-407. https://doi.org/10.3151/jact.2.395.   DOI
2 Rashad, A.M. (2014), "A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash", Mater. Des., 53, 1005-1025. https://doi.org/10.1016/j.matdes.2013.07.074.   DOI
3 Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D. and Gartner, E.M. (2008), "Sustainable development and climate change initiatives", Cement Concrete Res., 38(2), 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008.   DOI
4 Thomas, R.J. and Peethamparan, S. (2015), "Alkali-activated concrete: Engineering properties and stress-strain behavior", Constr. Build. Mater., 93, 49-56. https://doi.org/10.1016/j.conbuildmat.2015.04.039.   DOI
5 Al-Rawi, S. and Taysi, N. (2018), "Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber", Adv. Concrete Constr., 6(4), 323. http://doi.org/10.12989/acc.2018.6.4.323.   DOI
6 Aydin, S. (2013), "A ternary optimisation of mineral additives of alkali activated cement mortars", Constr. Build. Mater., 43, 131-138. https://doi.org/10.1016/j.conbuildmat.2013.02.005.   DOI
7 Chen, C.T., Nguyen, H.A., Chang, T.P., Yang, T.R. and Nguyen, T.D. (2015), "Performance and microstructural examination on composition of hardened paste with no-cement SFC binder", Constr. Build. Mater., 76, 264-272. https://doi.org/10.1016/j.conbuildmat.2014.11.032.   DOI
8 Lee, N.K. and Lee, H.K. (2013), "Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature", Constr. Build. Mater., 47, 1201-1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107.   DOI
9 Brough, A.R. and Atkinson, A. (2002), "Sodium silicate-based, alkali-activated slag mortars-Part I. Strength, hydration and microstructure", Cement Concrete Res., 32(6), 865-879. https://doi.org/10.1016/S0008-8846(02)00717-2.   DOI
10 Ganesan, N., Abraham, R., Deepa Raj, S. and Sasi, D. (2014), "Stress-strain behaviour of confined Geopolymer concrete", Constr. Build. Mater., 73, 326-331. https://doi.org/10.1016/j.conbuildmat.2014.09.092.   DOI
11 Shaikh, F.U. (2014), "Effects of alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete Constr., 2(2), 109. http://doi.org/10.12989/acc.2014.2.2.109.   DOI
12 Rashad, A.M. (2013), "Properties of alkali-activated fly ash concrete blended with slag", Iran. J. Mater. Sci. Eng., 10(1), 57-64.
13 Patil, A.A., Chore, H.S. and Dode, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29. http://doi.org/10.12989/acc.2014.2.1.029.   DOI
14 Jiang, C., Wu, Y.F., and Jiang, J.F. (2017), "Effect of aggregate size on stress-strain behavior of concrete confined by fiber composites", Compos. Struct., 168, 851-862. https://doi.org/10.1016/j.compstruct.2017.02.087   DOI
15 Bakharev, T. (2006), "Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing", Cement Concrete Res., 36(6), 1134-1147. https://doi.org/10.1016/j.cemconres.2006.03.022.   DOI
16 Granizo, M.L., Alonso, S., Blanco-Varela, M.T. and Palomo, A. (2002), "Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction", J. Am. Ceram. Soc., 85(1), 225-231. https://doi.org/10.1111/j.1151-2916.2002.tb00070.x.   DOI
17 Han, B. and Xiang, T.Y. (2017), "Axial compressive stress-strain relation and poisson effect of structural lightweight aggregate concrete", Constr. Build. Mater., 146, 338-343. https://doi.org/10.1016/j.conbuildmat.2017.04.101.   DOI
18 Hosseinpour, F. and Abbasnia, R. (2014), "Experimental investigation of the stress-strain behaviorof FRP confined concrete prisms", Adv. Concrete Constr., 2, 177-192. http://doi.org/10.12989/acc.2014.2.3.177.   DOI
19 Jangra, P. and Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., 5, 377-390. http://doi.org/10.12989/acc.2017.5.4.377.   DOI
20 Muttaqin, H., Tamon, U and Yasuhiko, S. (2008), "Stress-strain relationship of frost-damaged concrete subjected to fatigue loading", J. Mater. Civil Eng., 20(1), 37-45. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:1(37).   DOI
21 Garcia Lodeiro, I., Fernandez-Jimenez, A., Palomo, A. and Macphee, D.E. (2010), "Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium", Cement Concrete Res., 40(1), 27-32. https://doi.org/10.1016/j.cemconres.2009.08.004.   DOI
22 Da, B., Yu, H., Ma, H., Tan, Y., Mi, R. and Dou, X. (2016), "Experimental investigation of whole stress-strain curves of coral concrete", Constr. Build. Mater., 122, 81-89. https://doi.org/10.1016/j.conbuildmat.2016.06.064.   DOI
23 Gao, X., Yu, Q.L. and Brouwers, H.J.H. (2016), "Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model", Constr. Build. Mater., 119, 175-184. https://doi.org/10.1016/j.conbuildmat.2016.05.026.   DOI
24 Juenger, M.C.G., Winnefeld, F., Provis, J.L. and Ideker, J.H. (2011), "Advances in alternative cementitious binders", Cement Concrete Res., 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012.   DOI
25 Nguyen, H.A., Chang, T.P., Lee, P.H. and Shih, J.Y. (2020), "Experimental investigation of bond-slip performance of reinforcement in two green concretes", Mater. Civil Eng., 32(3), 04020014. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003029.   DOI
26 Popovics, S. (1973), "A numerical approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.   DOI
27 Sugama, T., Brothers, L.E. and Van de Putte, T.R. (2005), "Acid-resistant cements for geothermal wells: Sodium silicate activated slag/fly ash blends", Adv. Cement Res., 17(2), 65-75. https://doi.org/10.1680/adcr.2005.17.2.65.   DOI
28 Tung, N.D. and Tue N.V. (2015), "Post-peak behavior of concrete specimens undergoing deformation localization in uniaxial compression", Constr. Build. Mater., 99, 109-117. https://doi.org/10.1016/j.conbuildmat.2015.09.013.   DOI
29 Van Mier, J.G.M., Shah, S.P., Arnaud, M., Balayssac, J.P., Bascoul, A., Choi, S. and Zissopoulos, D. (1997), "Strain-softening of concrete in uniaxial compression", Mater. Struct., 30(4), 195-209. https://doi.org/10.1016/j.conbuildmat.2015.09.013.   DOI
30 Vliet, M.R.A. and Mier, J.G.M. (1995), "Softening behaviour of concrete under uniaxial compression", Frac. Mech. Concrete Struct., 1, 383.
31 Noushini, A., Aslani, F., Castel, A., Gilbert, R.I., Uy, B. and Foster, S. (2016), "Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete", Cement Concrete Compos., 73, 136-146. https://doi.org/10.1016/j.cemconcomp.2016.07.004.   DOI
32 Puertas, F. and Fernandez-Jimenez, A. (2003), "Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes", Cement Concrete Compos., 25(3), 287-292. https://doi.org/10.1016/S0958-9465(02)00059-8.   DOI
33 Shah, S.P., Choi, S. and Jansen, D.C. (1996), "Strain softening of concrete in compression", Proc. Fract. Mech. Concrete Struct., 3, 1827-1841.
34 Yang, T.R., Chang, T.P., Chen, B.T., Shih, J.Y. and Lin, W.L. (2012), "Effect of alkaline solutions on engineering properties of alkali-activated GGBFS paste", J. Mar. Sci. Tech., 20(3), 311-318.
35 Yip, C.K., Lukey, G.C. and Van Deventer, J.S. (2005), "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation", Cement Concrete Res., 35(9), 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042.   DOI
36 Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S., and Van Deventer, J.S.J. (2014), "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash", Cement Concrete Compos., 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.   DOI
37 Haider, G.M., Sanjayan, J.G. and Ranjith, P.G. (2014), "Complete triaxial stress-strain curves for geopolymer", Constr. Build. Mater., 69, 196-202. https://doi.org/10.1016/j.conbuildmat.2014.07.058.   DOI
38 Nguyen, H.A., Chang, T.P., Shih, J.Y., Chen, C.T. and Nguyen, T.D. (2016), "Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder", Constr. Build. Mater., 106, 670-677.https://doi.org/10.1016/j.conbuildmat.2015.12.163.   DOI