Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.4.271

On the mechanical characteristics of fiber reinforced polymer concrete  

Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Naseri, Hamid (Department of Civil Engineering, Faculty of Engineering, Urmia University)
Hajihassani, Mohsen (Department of Civil Engineering, Faculty of Engineering, Urmia University)
Kharghani, Mehdi (Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Science and Research Branch of Tehran)
Chalioris, Constantin E. (Department of Civil Engineering, School of Engineering, Democritus University of Thrace)
Publication Information
Advances in concrete construction / v.12, no.4, 2021 , pp. 271-282 More about this Journal
Abstract
Polymer Concrete (PC) is a composite material made by fully replacing the cement hydrate binders of conventional cement concrete with polymer binders or liquid resins. As expected, the physico-mechanical properties of PC concrete are governed by the composition of the PC mixture. The present study aims to examine the effect of the aggregate type and of the addition of steel fibers on the mechanical properties of PC. In particular, two PC concrete mixtures, using granite or silica aggregates, have been developed and the effect of the addition of steel fibers has been investigated. The PC mixtures are characterized by mechanical tests such as the compression test, the flexural test, the splitting tensile test and the estimation of the energy absorption. The results of this study demonstrate a relative superiority, in terms of mechanical properties, of the PC made with granite aggregates as compared to that of the silica aggregate mixture. Moreover, the addition of steel fibers on PC mixtures showed a significant increase of the compressive toughness, of the splitting tensile and of the flexural strength, whereas the Young's modulus and compressive strength showed a slight increase.
Keywords
aggregates; mechanical properties; polymer concrete; polyester resin; steel fibers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Garbacz, A. and Sokolowska, J.J. (2013), "Concrete-like polymer composites with fly ashes-Comparative study", Constr. Build. Mater., 38, 689-699. https://doi.org/10.1016/j.conbuildmat.2012.08.052.   DOI
2 Gribniak, V., Kaklauskas, G., Kwan, A.K.H., Bacinskas, D. and Ulbinas, D. (2012), "Deriving stress-strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement", Eng. Struct., 42, 387-395. https://doi.org/10.1016/j.engstruct.2012.04.032.   DOI
3 Gribniak, V., Ng, P.L., Tamulenas, V., Misiunaite, I., Norkus, A. and Sapalas, A. (2019), "Strengthening of fibre reinforced concrete elements: Synergy of the fibres and external sheet", Sustain., 11(16), 4456. https://doi.org/10.3390/su11164456.   DOI
4 Rahmani, E., Dehestani, M., Beygi, M.H.A., Allahyari, H. and Nikbin, I.M. (2013), "On the mechanical properties of concrete containing waste PET particles", Constr. Build. Mater., 47, 1302-1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041.   DOI
5 Reis, J.M.L. (2005), "Mechanical characterization of fiber reinforced polymer concrete", Mater. Res., 8(3), 357-360. https://doi.org/10.1590/S1516-14392005000300023.   DOI
6 Pratap, A. (2002), "Vinyl ester and acrylic based polymer concrete for electrical applications", Prog. Cryst. Growth Charact. Mater., 45(1-2), 117-125. https://doi.org/10.1016/S0960-8974(02)00036-0.   DOI
7 Reis, J.M.L. (2006), "Fracture and flexural characterization of natural fiber-reinforced polymer concrete", Constr. Build. Mater., 20, 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008.   DOI
8 Reis, J.M.L. (2009), "Effect of textile waste on the mechanical properties of polymer concrete", Mater. Res., 12(1), 63-67. https://doi.org/10.1590/S1516-14392009000100007.   DOI
9 Reis, J.M.L. and Ferreira, A.J.M. (2004), "Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers", Constr. Build. Mater., 18, 523-528. https://doi.org/10.1016/j.conbuildmat.2004.04.010.   DOI
10 Pal, S., Tiwari, S., Katyal, K. and Singh, A. (2019), "Effect of polymer modification on structural and mechanical properties of concrete using epoxy emulsion as the modifier", Innov. Mater. Sci. Eng., 1-10. https://doi.org/10.1007/978-981-13-2944-9_1.   DOI
11 Sosoi, G., Barbuta, M., Serbanoiu, A.A., Babor, D. and Burlacu, A. (2018), "Wastes as aggregate substitution in polymer concrete", Proc. Manuf., 22, 347-351. https://doi.org/10.1016/j.promfg.2018.03.052.   DOI
12 Saribiyik, M., Piskin, A. and Saribiyik, A. (2013), "The effects of waste glass powder usage on polymer concrete properties", Constr. Build. Mater., 47, 840-844. https://doi.org/10.1016/j.conbuildmat.2013.05.023.   DOI
13 Shokrieh, M.M., Rezvani, S. and Mosalmani, R. (2017), "Mechanical behavior of polyester polymer concrete under low strain rate loading conditions", Polym. Test., 63, 596-604. https://doi.org/10.1016/j.polymertesting.2017.09.015.   DOI
14 Simoes, T., Octavio, C., Valenca, J., Costa, H., Dias-da-Costa, D. and Julio, E. (2017), "Influence of concrete strength and steel fiber geometry on the fiber/matrix interface", Compos. Part B Eng., 122, 156-164. https://doi.org/10.1016/j.compositesb.2017.04.010.   DOI
15 Sun, J., Feng, J. and Chen, Z. (2019), "Effect of ferronickel slag as fine aggregate on properties of concrete", Constr. Build. Mater., 206, 201-209. https://doi.org/10.1016/j.conbuildmat.2019.01.187.   DOI
16 Toufigh, V., Hosseinali, M. and Shirkhorshidi, S.M. (2016), "Experimental study and constitutive modeling of polymer concrete's behavior in compression", Constr. Build. Mater., 112, 183-190. https://doi.org/10.1016/j.conbuildmat.2016.02.100.   DOI
17 Tsonos, A.D.G. (2009), "Steel fiber high-strength reinforced concrete: A new solution for earthquake strengthening of old R/C structures", WIT Tran. Built Environ., 104, 153-164.   DOI
18 Maksimov, R.D., Jirgens, L., Jansons, J. and Plume, E. (1999), "Mechanical properties of polyester polymer-concrete", Mech. Compos. Mater., 35(2), 99-110. https://doi.org/10.1007/BF02257239.   DOI
19 Torres, J.A. and Lantsoght, E.O.L. (2019), "Influence of fiber content on shear capacity of steel fiber-reinforced concrete beams", Fiber., 7(12), 102. https://doi.org/10.3390/fib7120102.   DOI
20 Lee, J.Y., Shin, H.O., Yoo, D.Y. and Yoon, Y.S. (2018), "Structural response of steel-fiber-reinforced concrete beams under various loading rates", Eng. Struct., 156, 271-283. https://doi.org/10.1016/j.engstruct.2017.11.052.   DOI
21 Mohammed, A.A. and Rahim, A.A.F. (2020), "Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber", Constr. Build. Mater., 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350.   DOI
22 Wang, J., Dai, Q., Guo, S. and Si, R. (2019), "Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays", Constr. Build. Mater., 203, 469-480. https://doi.org/10.1016/j.conbuildmat. 2019.01.085.   DOI
23 Ferdous, W., Manalo, A., Aravinthan, T. and Van Erp, G. (2016), "Properties of epoxy polymer concrete matrix: effect of resinto-filler ratio and determination of optimal mix for composite railway sleepers", Constr. Build. Mater., 124, 287-300. https://doi.org/10.1016/j.conbuildmat.2016.07.111.   DOI
24 Zhao, M., Zhang, B., Shang, P., Fu, Y., Zhang, X. and Zhao, S. (2019), "Complete stress-strain curves of self-compacting steel fiber reinforced expanded-shale lightweight concrete under uniaxial compression", Mater., 12(18), 2979. https://doi.org/10.3390/ma12182979.   DOI
25 Doghmane, M., Hadjoub, F., Doghmane, A. and Hadjoub, Z. (2007), "Approaches for evaluating Young's and shear moduli in terms of a single SAW velocity via SAM technique", Mater. Lett., 61(3), 813-816. https://doi.org/10.1016/j.matlet.2006.05.080.   DOI
26 Douba, A.E., Emiroglou, M., KandiL, U.F. and Taha, M.M.R. (2019), "Very ductile polymer concrete using carbon nanotubes", Constr. Build. Mater., 196, 468-477. https://doi.org/10.1016/j.conbuildmat.2018.11.021.   DOI
27 Ferdous, W., Manalo, A., Wong, H.S., Abousnina, R., AlAjarmeh, O.S., Zhuge, Y. and Schubel, P. (2020), "Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects", Constr. Build. Mater., 232, 117229. https://doi.org/10.1016/j.conbuildmat.2019.117229.   DOI
28 Fowler, D.W. (1999), "Polymers in concrete: a vision for the 21st century", Cement Concrete Compos., 21(5-6), 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3.   DOI
29 Zhao, J., Liang, J., Chu, L. and Shen, F. (2018), "Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement", Mater., 11(9), 1682. https://doi.org/10.3390/ma11091682.   DOI
30 Yoo, D.Y., Banthia, N., Lee, J.Y. and Yoon, Y.S. (2018), "Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite", Cement Concrete Compos., 86, 57-71. https://doi.org/10.1016/j.cemconcomp.2017.11.002.   DOI
31 Murthy, A.R., Karihaloo, B.L., Rani, P.V. and Priya, D.S. (2018), "Fatigue behaviour of damaged RC beams strengthened with ultrahigh performance fiber reinforced concrete", Int. J. Fatigue, 116, 659-668. https://doi.org/10.1016/j.ijfatigue.2018.06.046.   DOI
32 Naaman, A.E. (2003), "Engineered steel fibers with optimal properties for reinforcement of cement composites", J. Adv. Concrete Tech., 1(3), 241-252. https://doi.org/10.3151/jact.1.241.   DOI
33 Nataraja, M.C., Dhang, N. and Gupta, A.P. (1999), "Stress-strain curves for steel fiber reinforced concrete under compression", Cement Concrete Compos., 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9.   DOI
34 Niaki, M.H., Fereidoon, A. and Ahangari, M.G. (2018), "Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete", Compos. Struct., 191, 231-238. https://doi.org/10.1016/j.compstruct.2018.02.063.   DOI
35 Ohama, Y. (1973), "Mix proportions and properties of polyester resin concretes", Am. Concrete Inst., 40, 283-294.
36 Okada, K., Koyanagi, W. and Yonezawa, T. (1975) "Thermo dependent properties of polyester resin concrete", Proceedings of the 5th International Congress on Polymer Concrete, Lancaster, May.
37 Olivito, R.S. and Zuccarello, F.A. (2010), "An experimental study on the tensile strength of steel fiber reinforced concrete", Compos. Part B Eng., 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003.   DOI
38 Xu, P. and Yu, Y.H. (2008), "Research on steel-fiber polymer concrete machine tool structure", J. Coal Sci. Eng., 14(4), 689-692. https://doi.org/10.1007/s12404-008-0444-z.   DOI
39 Tsonos, A.D.G. (2009), "Ultra-high-performance fiber reinforced concrete: An innovative solution for strengthening old R/C structures and for improving the FRP strengthening method", WIT Tran. Eng. Sci., 64, 273-284.   DOI
40 Wang, M. and Wan, W. (2019), "A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test", Int. J. Rock Mech. Min. Sci., 123, 104094. https://doi.org/10.1016/j.ijrmms.2019.104094 104094.   DOI
41 Murthy, A.R., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultrahigh performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315.   DOI
42 Martinez-Barrera, G., Menchaca-Campos, C. and Gencel, O. (2013), "Polyester polymer concrete: Effect of the marble particle sizes and high gamma radiation doses", Constr. Build. Mater., 41, 204-208. https://doi.org/10.1016/j.conbuildmat.2012.12.009.   DOI
43 Hameed, A.M. and Hamza, M.T. (2019), "Characteristics of polymer concrete produced from wasted construction materials", Energy Proc., 157, 43-50. https://doi.org/10.1016/j.egypro.2018.11.162.   DOI
44 Vipulanandan, C. and Paul, E. (1993), "Characterization of polyester polymer and polymer concrete", J. Mater. Civil Eng., ASCE, 5(1), 62-82. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:1(62).   DOI
45 Chalioris, C.E. and Liotoglou, F.A. (2015), "Tests and simplified behavioral model for steel fibrous concrete under compression", Adv. Civil Eng. Build. Mater. IV; Chang, S.-Y., Al Bahar, S.K., Husain, A.-A.M., Zhao, J., Eds, 195-199.
46 Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2013), "Implications of test methodology on post-cracking and fracture behavior of steel fiber reinforced concrete", Compos. Part B Eng., 46, 31-38. https://doi.org/10.1016/j.compositesb.2012.10.016.   DOI
47 Brockenbrough, T.W. and Patterson, D.N. (1982), "Fiber reinforced methacrylate polymer concrete", ACI J., 79(4), 322-325.
48 Gunasekaran, M. (2000), "Polymer concrete: a versatile, low-cost material for Asian electrical infrastructure systems", Proc. IEEE Int. Symp. Electr. Insulation, 356-361.
49 Guo, Y., Xie, J., Zhao, J. and Zuo, K. (2019), "Utilization of unprocessed steel slag as fine aggregate in normal- and high-strength concrete", Constr. Build. Mater., 204, 41-49, https://doi.org/10.1016/j.conbuildmat.2019.01.178.   DOI
50 Haidar, M., Ghorbel, E. and Toutanji, H. (2011), "Optimization of the formulation of micro-polymer concretes", Constr. Build. Mater., 25(4), 1632-1644. https://doi.org/10.1016/j.conbuildmat.2010.10.010.   DOI
51 Hashemi, M.J., Jamshidi, M. and Aghdam, J.H. (2017), "Investigating fracture mechanics and flexural properties of unsaturated polyester polymer concrete (UP-PC)", Constr. Build. Mater., 163, 767-775. https://doi.org/10.1016/j.conbuildmat.2017.12.115.   DOI
52 Heidari-Rarani, M., Aliha, M.R.M., Shokrieh, M.M. and Ayatollahi, M.R. (2014), "Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings-An experimental study", Constr. Build. Mater., 64, 308-315. https://doi.org/10.1016/j.conbuildmat.2014.04.031.   DOI
53 Guerini, V., Conforti, A., Plizzari, G.A. and Kawashima, S. (2018), "Influence of steel and macro-synthetic fibers on concrete properties", Fibers, 6(3), 47. https://doi.org/10.3390/fib6030047.   DOI
54 Chalioris, C.E., Kosmidou, P.M.K. and Karayannis, C.G. (2019), "Cyclic response of steel fiber reinforced concrete slender beams: an experimental study", Mater., 12(9), 1398. https://doi.org/10.3390/ma12091398.   DOI
55 Noumowe, A. (2005), "Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200 C", Cement Concrete Res., 35(11), 2192-8. https://doi.org/10.1016/j.cemconres.2005.03.007.   DOI
56 Rebeiz, K.S. (1996), "Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste", Constr. Build. Mater., 10, 215-220. https://doi.org/10.1016/0950-0618(95)00088-7.   DOI
57 Ribeiro, M.C.S., Fiuza, A., Castro, A.C.M., Silva, F.G., Dinis, M.L., Meixedo, J.P. and Alvim, M.R. (2013), "Mix design process of polyester polymer mortars modified with recycled GFRP waste materials", Compos. Struct., 105, 300-310. https://doi.org/10.1016/j.compstruct.2013.05.023.   DOI
58 Jafari, K., Tabatabaeian, M., Joshaghani, A. and Ozbakkaloglu, T. (2018), "Optimizing the mixture design of polymer concrete: An experimental investigation", Constr. Build. Mater., 167, 185-196. https://doi.org/10.1016/j.conbuildmat.2018.01.191.   DOI
59 ASTM C33 (2008), Standard Specification for Concrete Aggregates, ASTM International; West Conshohocken, USA.
60 ASTM C580 (2018), Standard Test Method for Flexural Strength and Modulus of Elasticity of Chemical Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes, ASTM International, West Conshohocken, PA.
61 Chalioris, C.E. (2013), "Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure", Constr. Build. Mater., 43, 317-336. https://doi.org/10.1016/j.conbuildmat.2013.02.039.   DOI
62 Bulut, H.A. and Sahin, R. (2017), "A study on mechanical properties of polymer concrete containing electronic plastic waste", Compos. Struct., 178, 50-62. https://doi.org/10.1016/j.compstruct.2017.06.058.   DOI
63 Caggiano, A., Cremona, M., Faella, C., Lima, C. and Martinelli, E. (2012), "Fracture behavior of concrete beams reinforced with mixed long/short steel fibers", Constr. Build. Mater., 37, 832-840. https://doi.org/10.1016/j.conbuildmat.2012.07.060.   DOI
64 Campione, G. (2015), "Analytical prediction of load deflection curves of external steel fibers R/C beam-column joints under monotonic loading", Eng. Struct., 83, 86-98. https://doi.org/10.1016/j.engstruct.2014.10.047.   DOI
65 Campione, G. and Mangiavillano, M.L. (2008), "Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations", Eng. Struct., 30, 2970-2980. https://doi.org/10.1016/j.engstruct.2008.04.019.   DOI
66 Cardoso, C., Camoes, A., Eires, R., Mota, A., Araujo, J., Castro, F. and Carvalho, J. (2018), "Using foundry slag of ferrous metals as fine aggregate for concrete", Resour. Conserv. Recyc., 138, 130-141. https://doi.org/10.1016/j.resconrec.2018.05.020.   DOI
67 Foray-Thevenin, G., Vigier, G., Vassoille, R. and Orange, G. (2006), "Characterization of cement paste by dynamic mechanical thermo-analysis. Part I: Operative conditions", Mater. Charact., 56(2), 129-137. https://doi.org/10.1016/j.matchar.2005.10.007.   DOI
68 Hong, S., Kim, H. and Park, S.K. (2016), "Optimal mix and freeze-thaw durability of polysulfide polymer concrete", Constr. Build. Mater., 127, 539-545. https://doi.org/10.1016/j.conbuildmat.2016.10.056.   DOI
69 Chalioris, C.E. and Panagiotopoulos, T.A. (2018), "Flexural analysis of steel fibre-reinforced concrete members", Comput. Concrete, 22(1), 11-25. https://doi.org/10.12989/cac.2018.22.1.011.   DOI
70 Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams", Cement Concrete Compos., 31(5), 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007.   DOI
71 Chalioris, C.E. and Sfiri, E.F. (2011), "Shear performance of steel fibrous concrete beams", Proc. Eng., 14, 2064-2068. https://doi.org/10.1016/j.proeng.2011.07.259.   DOI
72 Karayannis, C.G. (2000), "Nonlinear analysis and tests of steel-fiber concrete beams in torsion", Struct. Eng. Mech., 9(4), 323-338. https://doi.org/10.12989/sem.2000.9.4.323.   DOI
73 Kazemi, M., Madandoust, R. and de Brito, J. (2019), "Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing", Constr. Build. Mater., 224, 630-638. https://doi.org/10.1016/j.conbuildmat.2019.07.110.   DOI
74 Khalid, N.H.A., Hussin, M.W., Mirza, J., Ariffin, N.F., Ismail, M.A., Lee, H.S., Mohamed, A. and Jaya, R.P. (2016), "Palm oil fuel ash as potential green micro-filler in polymer concrete", Constr. Build. Mater., 102, 950-960. https://doi.org/10.1016/j.conbuildmat.2015.11.038.   DOI
75 Kim, K.S., Lee, D.H., Hwang, J.H. and Kuchma, D.A. (2012), "Shear behavior model for steel fiber-reinforced concrete members without transverse reinforcements", Compos. Part B Eng., 43(5), 2324-2334. https://doi.org/10.1016/j.compositesb.2011.11.064.   DOI
76 Kytinou, V.K., Chalioris, C.E. and Karayannis, C.G. (2020), "Analysis of residual flexural stiffness of steel fiber-reinforced concrete beams with steel reinforcement", Mater., 13(12), 2698. https://doi.org/10.3390/ma13122698.   DOI
77 Kytinou, V.K., Chalioris, C.E., Karayannis, C.G. and Elenas, A. (2020), "Effect of steel fibers on the hysteretic performance of concrete beams with steel reinforcement-Tests and analysis", Mater., 13(13), 2923. https://doi.org/10.3390/ma13132923.   DOI
78 Kou, S.C. and Poon, C.S. (2013), "A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin", Constr. Build. Mater., 41, 146-151. https://doi.org/10.1016/j.conbuildmat.2012.11.083.   DOI
79 Lam, M.N.T., Le, D.H. and Jaritngam, S. (2018), "Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash", Constr. Build. Mater., 191, 912-922. https://doi.org/10.1016/j.conbuildmat.2018.10.080.   DOI
80 Jin, N.J., Yeon, J., Seung, I. and Yeon, K.S. (2017), "Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete", Constr. Build. Mater., 156, 933-943. https://doi.org/10.1016/j.conbuildmat.2017.09.053.   DOI
81 Nogueira, P., Ramirez, C., Torres, A., Abad, M.J., Cano, J., Lopez, J., Lopez-Bueno, I. and Barral, L. (2001), "Effect of water sorption on the structure and mechanical properties of an epoxy resin system", Appl. Polym. Sci., 80(1), 71-80. https://doi.org/10.1002/1097-4628(20010404)80:1<71::AID-APP1077>3.0.CO;2-H.   DOI
82 Ribeiro, M.C.S., Meira-Castro, A.C., Silva, F.G., Santos, J., Meixedo, J.P., Fiuza, A., Dinis, M.L. and Alvim, M.R. (2015), "Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes", Resour. Conserv. Recyc., 104, 417-426. https://doi.org/10.1016/j.resconrec.2013.10.001.   DOI
83 Lee, S.C., Oh, J.H. and Cho, J.Y. (2015), "Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers", Mater., 8(4), 1442-1458. https://doi.org/10.3390/ma8041442.   DOI
84 ASTM C579 (2018), Standard Test Methods for Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings and Polymer Concrete, ASTM International, West Conshohocken, PA.
85 ACI 544.4R (2018), Guide to design with fiber-reinforced concrete, American Concrete Institute; Farmington Hills, MI, USA.
86 ASTM C469 (2002), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA.
87 ASTM C496 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA.
88 Barbuta, M. and Lepadatu, D. (2008), "Mechanical characteristics investigation of polymer concrete using mixture design of experiments and response surface method", J. Appl. Sci., 8(12), 2242-2249. https://doi.org/10.3923/jas.2008.2242.2249.   DOI
89 Barbuta, M., Harja, M. and Baran, I. (2010), "Comparison of mechanical properties for polymer concrete with different types of filler", J. Mater. Civil Eng., 22(7), 696-701. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000069.   DOI
90 Mahdi, F., Abbas, H. and Ali, A. (2013), "Flexural, shear and bond strength of polymer concrete utilizing recycled resin obtained from post consumer PET bottles", Constr. Build. Mater., 44, 798-811. https://doi.org/10.1016/j.conbuildmat.2013.03.081.   DOI
91 Mani, P., Gupta, A.K. and Krishnamoorthy, S. (1987), "Comparative study of epoxy and polyester resin-based polymer concretes", Int. J. Adhesion Adhesiv., 7(3), 157-163. https://doi.org/10.1016/0143-7496(87)90071-6.   DOI
92 Lokuge, W.P. and Aravinthan, T. (2013), "Mechanical properties of polymer concrete with different types of resin", Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, Sydney, Australia.
93 Barbuta, M., Rujanu, M. and Nicuta, A. (2016), "Characterization of polymer concrete with different wastes additions", Proc. Tech., 22, 407-412. https://doi.org/10.1016/j.protcy.2016.01.069.   DOI
94 Bedi, R., Chandra, R. and Singh, S.P. (2013), "Mechanical properties of polymer concrete", J. Compos., 948745. https://doi.org/10.1155/2013/948745.   DOI
95 Gribniak, V., Tamulenas, V., Ng, P.L., Arnautov, A.K., Gudonis, E. and Misiunaite, I. (2017), "Mechanical behavior of steel fiber-reinforced concrete beams bonded with external carbon fiber sheets", Mater., 10(6), 666. https://doi.org/10.3390/ma10060666.   DOI
96 Lantsoght, E.O.L. (2019), "How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups?", Compos. Part B Eng., 175, 107079. https://doi.org/10.1016/j.compositesb.2019.107079.   DOI