Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.2.145

Sulfuric acid effect and application of freezing-thawing curing on long fiber reinforced metabentonite and slag-based geopolymer composites  

Aygormez, Yurdakul (Civil Engineering Department, Yildiz Technical University, Davutpasa Campus)
Publication Information
Advances in concrete construction / v.12, no.2, 2021 , pp. 145-156 More about this Journal
Abstract
In this study, different types of metabentonite (MB) and slag (S)-based geopolymer were produced based on origin, polyvinyl alcohol (PVA) and basalt (B) fiber at different percentages of 0.2%, 0.4%, and 0.6%. A total of 7 series were produced. Two steps of curing method were applied for the samples, the first step was at room temperature from day 1-7, and the second step freezing-thawing from 8-28 days. Thus, the applicability of a curing method that used less energy instead of heat curing was investigated. Due to the freezing-thawing curing, the continuation of geopolymerization reactions was ensured and a compact structure was created. The produced samples were subjected to 10% sulfuric acid effect for 3 months after the 28th day. Compressive strength, flexural strength, ultrasonic pulse velocity (UPV), and weight losses due to acid effects were found. Despite the decrease in mechanical properties after the acid effect, the geopolymer products didn't experience easy dispersal because they had strong aluminosilicate bonds, crystalline phase formation, morphology, and lower calcium content that provided high stability. Also, SEM, XRD, FT-IR, and TGA-DTA analyzes and visual inspection resulting from the acid effect were examined.
Keywords
basalt fiber; freezing-thawing; geopolymer; metabentonite; PVA fiber; slag; sulfuric acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ASTM C348-14 (2014). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, ASTM International.
2 Aygormez, Y. (2021b), "Evaluation of the red mud and quartz sand on reinforced metazeolite-based geopolymer composites", J. Build. Eng., 43, 102528. https://doi.org/10.1016/j.jobe.2021.102528.   DOI
3 Aygormez, Y. (2021a), "Performance of ambient and freezing-thawing cured metazeolite and slag based geopolymer composites against elevated temperatures", Revista de la Construccion, 20(1), 145-162. http://doi.org/10.7764/rdlc.20.1.145.   DOI
4 Aygormez, Y., Canpolat, O. and Al-mashhadani, M.M. (2020b), "A survey on one year strength performance of reinforced geopolymer composites", Constr. Build. Mater., 264, 120267. https://doi.org/10.1016/j.conbuildmat.2020.120267.   DOI
5 Aygormez, Y., Canpolat, O. and Al-mashhadani, M.M. (2020c), "Assessment of geopolymer composites durability at one year age", J. Build. Eng., 32, 101453. https://doi.org/10.1016/j.jobe.2020.101453.   DOI
6 Aygormez, Y., Canpolat, O., Al-mashhadani, M.M. and Uysal, M. (2020a), "Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites", Constr. Build. Mater., 235, 117502. https://doi.org/10.1016/j.conbuildmat.2019.117502.   DOI
7 Bakharev, T. (2005), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005.   DOI
8 Bassuoni, M.T. and Nehdi, M.L. (2007), "Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction", Cement Concrete Res., 37(7), 1070-1084. https://doi.org/10.1016/j.cemconres.2007.04.014.   DOI
9 Bouguermouh, K., Bouzidi, N., Mahtout, L., Perez-Villarejo, L. and Martinez-Cartas, M.L. (2017), "Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator", J. Non-Crystal. Solid., 463, 128-137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011.   DOI
10 Calabria-Holley, J., Papatzani, S., Naden, B., Mitchels, J. and Paine, K. (2017), "Tailored montmorillonite nanoparticles and their behaviour in the alkaline cement environment", Appl. Clay Sci., 143, 67-75. https://doi.org/10.1016/j.clay.2017.03.005.   DOI
11 Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M.M., Aygormez, Y. and Uysal, M. (2018), "High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers", Constr. Build. Mater., 187, 1190-1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062.   DOI
12 Chang, J.J., Yeih, W. and Hung, C.C. (2005), "Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes", Cement Concrete Compos., 27(1), 85-91. https://doi.org/10.1016/j.cemconcomp.2003.12.001.   DOI
13 Douiri, H., Louati, S., Baklouti, S., Arous, M. and Fakhfakh, Z. (2016), "Enhanced dielectric performance of metakaolin-H3PO4 geopolymers", Mater. Lett., 164, 299-302. https://doi.org/10.1016/j.matlet.2015.10.172.   DOI
14 Davidovits, J. (1994), "Properties of geopolymer cements", First International Conference on Alkaline Cements and Concretes, Vol. 1, Kiev State Technical University, Ukraine.
15 Degirmenci, F.N. (2018), "Freeze-thaw and fire resistance of geopolymer mortar based on natural and waste pozzolans", Ceram.-Silikaty, 62(1) 41-49. https://doi.org/10.13168/cs.2017.0043.   DOI
16 Djobo, J.N.Y., Elimbi, A., Tchakoute, H.K. and Kumar, S. (2016), "Mechanical properties and durability of volcanic ash based geopolymer mortars", Constr. Build. Mater., 124, 606-614. https://doi.org/10.1016/j.conbuildmat.2016.07.141.   DOI
17 Chindaprasirt, P., Rattanasak, U. and Taebuanhuad, S. (2013), "Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer", Mater. Struct./Materiaux et Constr., 46(3), 375-381. https://doi.org/10.1617/s11527-012-9907-1.   DOI
18 Degirmenci, F.N. (2017), "Effect of sodium silicate to sodium hydroxide ratios on durability of geopolymer mortars containing natural and artificial pozzolans", Ceram.-Silikaty, 61(4), 340-350. https://doi.org/10.13168/cs.2017.0033.   DOI
19 Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X.   DOI
20 Buchwald, A., Hohmann, M., Posern, K. and Brendler, E. (2009), "The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders", Appl. Clay Sci., 46(3), 300-304. https://doi.org/10.1016/j.clay.2009.08.026.   DOI
21 Heah, C., Kamarudin, H., Al Bakri, A.M., Binhussain, M., Luqman, M., Nizar, I.K., Ruzaidi, C. and Liew, Y. (2011), "Effect of curing profile on kaolin-based geopolymers", Phys. Procedia, 22, 305-311. https://doi.org/10.1016/j.phpro.2011.11.048.   DOI
22 Paluszkiewicz, C., Holtzer, M. and Bobrowski, A. (2008), "FTIR analysis of bentonite in moulding sands", J. Molecul. Struct., 880(1-3), 109-114. https://doi.org/10.1016/j.molstruc.2008.01.028.   DOI
23 Shinde, B. and Kadam, K. (2016), "Properties of flyash based geopolymer mortar with ambient curing", Int. J. Eng. Res., 5, 203-206.
24 Xu, L., Ye, W.M., Chen, B., Chen, Y.G. and Cui, Y.J. (2016), "Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials", Eng. Geol., 213, 46-54. https://doi.org/10.1016/j.enggeo.2016.08.015.   DOI
25 Allahverdi, A. and Skvara, F. (2001), "Sulfuric acid attack on hardened paste of geopolymer cements, Part 1. Mechanism of corrosion at relatively high Concentrations", Ceram.-Silikaty, 45(3), 81-88.
26 Almusallam, A.A., Khan, F.M., Dulaijan, S.U. and Al-Amoudi, O.S.B. (2003), "Effectiveness of surface coatings in improving concrete durability", Cement Concrete Compos., 25(4-5), 473-481. https://doi.org/10.1016/S0958-9465(02)00087-2.   DOI
27 Afridi, S., Sikandar, M.A., Waseem, M., Nasir, H. and Naseer, A. (2019), "Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs)", Constr. Build. Mater., 217, 530-542. https://doi.org/10.1016/j.conbuildmat.2019.05.101.   DOI
28 Al-mashhadani, M.M., Canpolat, O., Aygormez, Y., Uysal, M. and Erdem, S. (2018), "Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites", Constr. Build. Mater., 167, 505-513. https://doi.org/10.1016/j.conbuildmat.2018.02.061.   DOI
29 Ali, N., Canpolat, O., Aygormez, Y. and Al-Mashhadani, M.M. (2020), "Evaluation of the 12-24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer", Constr. Build. Mater., 251, 118976. https://doi.org/10.1016/j.conbuildmat.2020.118976.   DOI
30 A lvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., Font, O., Moreno, T., Diez, S., Vazquez, E. and Barra, M. (2008), "Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes", J. Hazard. Mater., 154(1-3), 175-183. https://doi.org/10.1016/j.jhazmat.2007.10.008.   DOI
31 Arunagiri, K., Elanchezhiyan, P., Marimuthu, V., Arunkumar, G. and Rajeswaran, P. (2017), "Mechanical properties of basalt fiber based geopolymer concrete", Int. J. Sci., Eng. Technol. Res. (IJSETR), 6(4), 551.
32 ASTM C109/C109M-16a (2016), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens, ASTM International.
33 Duxson, P., Lukey, G.C. and van Deventer, J.S. (2007), "Physical evolution of Na-geopolymer derived from metakaolin up to 1000 C", J. Mater. Sci., 42(9), 3044-3054. https://doi.org/10.1007/s10853-006-0535-4.   DOI
34 Ahmad, S., Barbhuiya, S.A., Elahi, A. and Iqbal, J. (2011), "Effect of Pakistani bentonite on properties of mortar and concrete", Clay Min., 46(1), 85-92. https://doi.org/10.1180/claymin.2011.046.1.85.   DOI
35 Dias, D.P. and Thaumaturgo, C. (2005), "Fracture toughness of geopolymeric concretes reinforced with basalt fibers", Cement Concrete Compos., 27(1), 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044.   DOI
36 Duxson, P. and Provis, J.L. (2008), "Designing precursors for geopolymer cements", J. Am. Ceram. Soc., 91(12), 3864-3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x.   DOI
37 Duxson, P.S.W.M., Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and van Deventer, J.S. (2007), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Coll. Surf. A: Physicochem. Eng. Aspect., 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044.   DOI
38 Izzat, A.M., Al Bakri, A.M.M., Kamarudin, H., Moga, L.M., Ruzaidi, G.C.M., Faheem, M.T.M. and Sandu, A.V. (2013), "Microstructural analysis of geopolymer and ordinary Portland cement mortar exposed to sulfuric acid", Mater. Plast, 50(3), 171-174.
39 Frost, J.P. and Armstrong, D.J. (1994), "Concrete and silage effluent-a cyclical exposure method for accelerated corrosion testing", Farm Build. Prog., 116, 27-30.
40 Hamdi, N., Messaoud, I.B. and Srasra, E. (2019), "Production of geopolymer binders using clay minerals and industrial wastes", Comptes Rendus Chimie, 22(2-3), 220-226. https://doi.org/10.1016/j.crci.2018.11.010.   DOI
41 Kani, E.N. and Allahverdi, A. (2009), "Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan", J. Mater. Sci., 44(12), 3088-3097. https://doi.org/10.1007/s10853-009-3411-1.   DOI
42 Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O. and Nis, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345-362. http://doi.org/10.12989/acc.2018.6.4.345.   DOI
43 Flower, D.J.M. and Sanjayan, J.G. (2007), "Green house gas emissions due to concrete manufacture", Int. J. Life Cycle Assess., 12(5), 282. https://doi.org/10.1065/lca2007.05.327.   DOI
44 Seiffarth, T., Hohmann, M., Posern, K. and Kaps, C. (2013), "Effect of thermal pre-treatment conditions of common clays on the performance of clay-based geopolymeric binders", Appl. Clay Sci., 73, 35-41. https://doi.org/10.1016/j.clay.2012.09.010.   DOI
45 Rajamane, N.P., Nataraja, M.C., Lakshmanan, N., Dattatreya, J.K. and Sabitha, D. (2012), "Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag", Ind. J. Eng. Mater. Sci., 19, 357-367.
46 Rashad, A.M. (2013), "Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview", Constr. Build. Mater., 41, 303-318. https://doi.org/10.1016/j.conbuildmat.2012.12.001.   DOI
47 Rovnanik, P. (2010), "Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer", Constr. Build. Mater., 24(7), 1176-1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023.   DOI
48 Sakizci, M., Erdogan Alver, B. and Yorukogullari, E. (2009), "Thermal behavior and immersion heats of selected clays from Turkey", J. Therm. Anal. Calorimet., 98(2), 429-436. https://doi.org/10.1007/s10973-009-0294-y.   DOI
49 Sata, V., Sathonsaowaphak, A. and Chindaprasirt, P. (2012), "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack", Cement Concrete Compos., 34(5), 700-708. https://doi.org/10.1016/j.cemconcomp.2012.01.010.   DOI
50 Song, X.J., Marosszeky, M., Brungs, M. and Munn, R. (2005), "Durability of fly ash based geopolymer concrete against sulphuric acid attack", 10 DBMC International Conference on Durability of Building Materials and Components, Lyon, France.
51 Arslan, A.A., Uysal, M., Yilmaz, A., Al-mashhadani, M.M., Canpolat, O., Sahin, F. and Aygormez, Y. (2019), "Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites", Constr. Build. Mater., 225, 909-926. https://doi.org/10.1016/j.conbuildmat.2019.07.235.   DOI
52 Thokchom, S., Ghosh, P. and Ghosh, S. (2009), "Resistance of fly ash based geopolymer mortars in sulfuric acid", ARPN J. Eng. Appl. Sci., 4(1), 65-70.
53 Thokchom, S. (2014), "Fly ash geopolymer pastes in sulphuric acid", Int. J. Eng. Innov. Res., 3(6), 943-947.
54 En, B.S. (2005), "Methods of testing cement-Part 1: Determination of strength", European Committee for Standardization, 169, Brussels, Belgium,.
55 Uysal, M., Al-mashhadani, M.M., Aygormez, Y. and Canpolat, O. (2018), "Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars", Constr. Build. Mater., 176, 271-282. https://doi.org/10.1016/j.conbuildmat.2018.05.034.   DOI
56 Vafaei, M., Allahverdi, A., Dong, P. and Bassim, N. (2018), "Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration", Constr. Build. Mater., 193, 363-372. https://doi.org/10.1016/j.conbuildmat.2018.10.203.   DOI
57 O zkan, S. and Demir, F. (2020), "The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites", Constr. Build. Mater., 263, 120564. https://doi.org/10.1016/j.conbuildmat.2020.120564.   DOI
58 Van Deventer, J.S., Provis, J.L. and Duxson, P. (2012), "Technical and commercial progress in the adoption of geopolymer cement", Min. Eng., 29, 89-104. https://doi.org/10.1016/j.mineng.2011.09.009.   DOI
59 Vijai, K., Kumutha, R. and Vishnuram, B. (2010), "Effect of types of curing on strength of geopolymer concrete", Int. J. Phys. Sci., 5(9), 1419-1423. https://doi.org/10.5897/IJPS.9000200.
60 Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1-3), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016.   DOI
61 Shinde, B. and Kadam, K. (2016), "Effect of addition of ordinary portland cement on geopolymer concrete with ambient curing", International Journal of Modern Trends in Engineering and Research, Amravati, India.
62 Xu, H. and Van Deventer, J.S.J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J Min. Proc., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5.   DOI
63 Yaman, I.O., Inci, G., Yesiller, N. and Aktan, H.M. (2001), "Ultrasonic pulse velocity in concrete using direct and indirect transmission", ACI Mater. J., 98(6), 450.
64 Yunsheng, Z., Sun, W., Li, Z., Zhou, X., Eddie, and Chau, C., (2008), "Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber", Constr. Build. Mater., 22, 370-383. https://doi.org/10.1016/j.conbuildmat.2006.08.006.   DOI
65 Perera, D., Uchida, O., Vance, E. and Finnie, K. (2007), "Influence of curing schedule on the integrity of geopolymers", J. Mater. Sci., 42(9), 3099-3106. https://doi.org/10.1007/s10853-006-0533-6.   DOI
66 Li, Z., Zhang, Y. and Zhou, X. (2005), "Short fiber reinforced geopolymer composites manufactured by extrusion", J. Mater. Civil Eng., 17(6), 624-631. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(624).   DOI
67 McGuire E.M., Provis J.L., Duxson P. and Crawford, R. (2011), "Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions?", Proceedings of the Concrete, Concrete Institute of Australia, Perth, Australia.
68 Mirza, J., Riaz, M., Naseer, A., Rehman, F., Khan, A.N. and Ali, Q. (2009), "Pakistani bentonite in mortars and concrete as low cost construction material", Appl. Clay Sci., 45(4), 220-226. https://doi.org/10.1016/j.clay.2009.06.011.   DOI
69 Mobili, A., Belli, A., Giosue, C., Bellezze, T. and Tittarelli, F. (2016), "Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class", Cement Concrete Res., 88, 198-210. https://doi.org/10.1016/j.cemconres.2016.07.004.   DOI
70 Palomo, A., Grutzeck, M. and Blanco, M. (1999), "Alkali-activated fly ashes: a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9.   DOI
71 Puertas, F., Amat, T., Fernandez-Jimenez, A. and Vazquez, T. (2003), "Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres", Cement Concrete Compos., 33(12), 2031-2036. https://doi.org/10.1016/S0008-8846(03)00222-9.   DOI
72 Puertas, F., Martinez-Ramirez, S., Alonso, S. and Vazquez, T. (2000), "Alkali-activated fly ash/slag cements: strength behaviour and hydration products", Cement Concrete Compos., 30(10), 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2.   DOI