Browse > Article
http://dx.doi.org/10.12989/acc.2021.11.6.521

Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes  

Faramoushjan, Shahram Ghaedi (Department of Mining Engineering, Sirjan Branch, Islamic Azad University)
Jalalifar, Hossein (Department of Petroleum Engineering, Shahid Bahonar University of Kerman)
Kolahchi, Reza (Institute of Research and Development, Duy Tan University)
Publication Information
Advances in concrete construction / v.11, no.6, 2021 , pp. 521-529 More about this Journal
Abstract
This paper deals with the mathematical modelling and numerical study for buckling analysis in concrete beams containing carbon nanotubes (CNTs). In order to modelling the concrete structure, Euler-Bernoulli beam is utilized. For assuming the influences of CNTs in the concrete beam and the agglomeration of CNTs, the Mori-Tanaka model is utilized. The principle of Hamilton is utilized for calculating the final equations and solved by two procedures of differential quadrature (DQ) and analytical method of Navier. The comparison of obtained results from DQ and Navier methods are shown the validation of this work. In addition, the outcomes are compared with other papers in the literature. The influences of boundary condition, CNT volume fraction, CNT agglomeration, length to thickness ratio and mode number are shown on the normalized buckling load. The outcome presents with enhancing the volume fraction of reinforcing the beam by nanoparticles, the buckling load of structure is improved. Indeed, the agglomeration of CNTs can reduces the buckling load and stability of beam.
Keywords
buckling; concrete beam; CNTs; numerical method; agglomeration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Al-Kamal, M.K. (2019), "Nominal flexural strength of highstrength concrete beams", Adv. Concrete Constr., 7, 1-9. http://dx.doi.org/10.12989/acc.2019.7.1.001.   DOI
2 Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free buckling analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.   DOI
3 Matsuna, H. (2007), "Buckling and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", Int. J. Mech. Sci., 49, 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008   DOI
4 Taj, M., Hussain, M., Afsar, M.A. and Tounsi, A. (2020), "Effects of elastic medium on buckling of microtubules due to bending and torsion", Adv. Concrete Constr., 18, 411-457. https://doi.org/10.12989/acc.2020.9.5.491.   DOI
5 Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and buckling analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017   DOI
6 Medani M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32, 595-560. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
7 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.   DOI
8 Mehar, K., Panda, S.K., Devarajana, Y. and Choubeya, G. (2020), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 240, 406-411. https://doi.org/10.1016/j.compstruct.2019.03.002   DOI
9 Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Halim Benrahou, K. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.   DOI
10 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metal. Mater., 21, 571- 574. https://doi.org/10.1016/0001-6160(73)90064-3   DOI
11 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. http://dx.doi.org/10.12989/anr.2019.7.2.089.   DOI
12 Refrafi. S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.   DOI
13 Safari Bilouei, B., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18, 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.   DOI
14 Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 60, 825-845. http://dx.doi.org/10.12989/sem.2016.58.5.825.   DOI
15 Taj, M., Hussain, M., Afsar, M.A. and Tounsi, A. (2020a), "Effects of elastic medium on buckling of microtubules due to bending and torsion", Adv. Concrete Constr., 18, 411-457. https://doi.org/10.12989/acc.2020.9.5.491.   DOI
16 Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17, 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.   DOI
17 Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020b), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25, 245-253. https://doi.org/10.12989/cac.2020.25.3.245.   DOI
18 Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71, 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011.   DOI
19 Zamanian, M., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24, 43-57. https://doi.org/10.12989/was.2017.24.1.043.   DOI
20 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. http://doi.org/10.12989/cac.2020.25.2.155.   DOI
21 Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035.   DOI
22 Raj, S.D., Ganesan, N. and Abraham, R. (2021), "Role of fibers on the performance of geopolymer concrete exterior beam column joints", Adv. Concrete Constr., 9, 115-123. https://doi.org/10.12989/acc.2020.9.2.115.   DOI
23 Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.   DOI
24 Hussain, M. (2020), "Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law", Struct. Eng. Mech., 76, 129-139. https://doi.org/10.12989/sem.2020.76.1.129.   DOI
25 Asghar, S., Naeem, M.N., Hussain, M., Khadimallah, M.A., Hussain, M., Iqbal, Z. and Tounsi, A. (2020a), "Effect of chiral structure for free vibration of DWCNTs: Modal analysis", Adv. Concrete Constr., 9, 577-588. http://dx.doi.org/10.12989/acc.2020.9.6.577.   DOI
26 Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York.
27 Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Bucklings of carbon nanotube reinforced composites", J. Sound Vib., 329, 1875-1889.   DOI
28 Hussain, M., Naeem, M.N. and Tounsi, A. (2020e), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9, 301-311. https://doi.org/10.12989/acc.2020.9.3.301.   DOI
29 Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7, 45114. https://doi.org/10.1063/1.4979112.   DOI
30 Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Mater. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.   DOI
31 Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surfacetreated multi-walled carbon nanotubes", Carbon, 43, 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017.   DOI
32 Hussain, M., Naeem, M.N. and Tounsi, A. (2020a), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9, 557-568. https://doi.org/10.12989/acc.2020.9.6.557.   DOI
33 Le, V.P.N., Bui, D.V., Chu, T.H.V., Kim, I.T., Ahn, J.H. and Dao, D.K. (2016), "Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study", Struct. Eng. Mech., 60, 1001-1019. http://dx.doi.org/10.12989/sem.2016.60.6.1001.   DOI
34 Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. http://dx.doi.org/10.12989/scs.2020.34.5.643.   DOI
35 Heidarzadeh, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: Magneto-thermo-mechanical stress analysis", Int. J. Civil Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.   DOI
36 Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. http://dx.doi.org/10.12989/sss.2020.25.4.409.   DOI
37 Abu-Obeidah, A.S., Abdalla, J.A. and Hawileh, R.A. (2021), "Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates", Adv. Concrete Constr., 7, 249-262. http://dx.doi.org/10.12989/acc.2019.7.4.249.   DOI
38 Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.   DOI
39 Albegmprli, H.M., Eren Gulsan, M. and Cevik, A. (2021), "Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam", Adv. Concrete Constr., 7, 39-50. http://dx.doi.org/10.12989/acc.2019.7.1.039.   DOI
40 Hussain, M. and Naeem, M.N. (2020), "Vibration characteristics of zigzag FGM single-walled carbon nanotubes based on Ritz method with ring-stiffeners", Ind. J. Phy., 1-12. https://doi.org/10.1007/s12648-020-01894-1.   DOI
41 Hussain, M., Naeem, M.N., Asghar, S. and Tounsi, A. (2020b), "Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT", Comput. Concrete, 25, 343-354. https://doi.org/10.12989/cac.2020.25.4.343.   DOI
42 Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020d), "Computer adid approach for modeling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.   DOI
43 Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020c), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.   DOI
44 Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.   DOI
45 Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Meth. Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001.   DOI
46 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
47 Kandekar, S.B. and Talikoti, R.S. (2020), "Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber", Adv. Concrete Constr., 9, 1-7. https://doi.org/10.12989/acc.2020.9.1.001.   DOI
48 Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2013), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 5, 2342-2355. ttps://doi.org/10.1007/s12206-015-0811-9.   DOI
49 Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25, 37-57. https://doi.org/10.12989/cac.2020.25.1.037.   DOI
50 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7, 431-442. https://doi.org/10.12989/anr.2019.7.6.431.   DOI
51 Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.   DOI
52 Arbabi, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind. Struct., 24, 431-446. http://dx.doi.org/10.12989/was.2017.24.5.431.   DOI
53 Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020b), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. http://doi.org/10.12989/cac.2020.25.2.133.   DOI
54 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of - different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. http://dx.doi.org/10.12989/sss.2020.25.2.197.   DOI
55 Fattahi, A.M. and Safaei, B. (2017), "Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23, 5079-5091. https://doi.org/10.1007/s00542-017-3345-5.   DOI
56 Hassan, A., Elkady, H. and Shaaban, I.G. (2019), "Effect of adding carbon nanotubes on corrosion rates and steel concrete bond", Sci. Rep., 9, 6285-6297. https://doi.org/10.1038/s41598-019-42761-2.   DOI