Browse > Article
http://dx.doi.org/10.12989/acc.2020.10.2.141

The effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell: A mechanical model  

Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Bouzgarrou, Souhail Mohamed (Civil Engineering Department, Faculty of Engineering, Jazan University)
Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University)
Ahmad, Manzoor (Department of Mathematics University of Poonch Rawalwkot)
Tounsi, Abdelouahed (Materials and Hydrology Laboratory University of Sidi Bel Abbes, Algeria Faculty of Technology Civil Engineering Department)
Publication Information
Advances in concrete construction / v.10, no.2, 2020 , pp. 141-149 More about this Journal
Abstract
In the present study, a mechanical model is applied to account the effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell. The model immeasurably associates filament's bending rigidity, neighboring system elasticity, and cytosol viscosity with buckling wavelengths, buckling growth rates and buckling amplitudes of the filament. Cytoskeleton components in living cell bear large compressive force and are responsible in maintaining the cell shape. Actually these filaments are surrounded by viscoelastic media consisting of other filaments network and viscous cytosole within the cell. This surrounding, viscoelastic media affects the buckling behavior of these filaments when external force is applied on these filaments. The obtained results, indicate that the coupling of viscoelastic media with the viscous cytosol greatly affect the buckling behavior of microfilament. The buckling forces increased with the increase in the intensity of surrounding viscoelastic media.
Keywords
microfilaments; viscoelastic media; buckling; compressive loads; amplitudes;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349. http://dx.doi.org/10.12989/amr.2017.6.4.349.   DOI
2 Kikumoto, M., Kurachi, M., Tosa, V. and Tashiro, H. (2006), "Flexural rigidity of individual microtubules measured by a buckling force with optical traps", Biophys. J., 90(5), 1687-1696. https://doi.org/10.1529/biophysj.104.055483.   DOI
3 Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.   DOI
4 Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., ... & Matsudaira, P. (2008), Molecular Cell Biology, Garland Science, New York.
5 Lundin, V.F., Leroux, M.R. and Stirling, P.C. (2010), "Quality control of cytoskeletal proteins and human disease", Trend. Biochem. Sci., 35(5), 288-297. https://doi.org/10.1007/s00709-012-0403-9.   DOI
6 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://dx.doi.org/10.12989/anr.2019.7.3.181.   DOI
7 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414.   DOI
8 Mirny, L. and Shakhnovich, E. (2001), "Protein folding theory: from lattice to all-atom models", Ann. Rev. Biophys. Biomolec. Struct., 30(1), 361-396. https://doi.org/10.1146/annurev.biophys.30.1.361.   DOI
9 Netter, F.H. and Colacino, S. (1989), Atlas of Human Anatomy, Ciba-Geigy Corporation.
10 Noria, S., Xu, F., McCue, S., Jones, M., Gotlieb, A.I. and Langille, B.L. (2004), "Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress", Am. J. Pathol., 164(4), 1211-1223. https://doi.org/10.1371/journal.pone.0004853.   DOI
11 Pan, X., Hobbs, R.P. and Coulombe, P.A. (2013), "The expanding significance of keratin intermediate filaments in normal and diseased epithelia", Curr. Opin. Cell Bio., 25(1), 47-56. https://doi.org/10.1016/j.ceb.2012.10.018.   DOI
12 Parekh, S.H., Chaudhuri, O., Theriot, J.A. and Fletcher, D.A. (2005), "Loading history determines the velocity of actin-network growth", Nat. Cell Bio., 7(12), 1219-1223. https://doi.org/10.1038/s41598-017-15638-5.   DOI
13 Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1(3), 475-490. https://doi.org/10.1007/s40819-015-0035-9.   DOI
14 Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloid shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-374. https://doi.org/10.1016/j.compstruct.2009.06.004.   DOI
15 Panda, S.K. and Singh, B.N. (2010), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.   DOI
16 Pokorny, J., Jelinek, F., Trkal, V., Lamprecht, I. and Holzel, R. (1997), "Vibrations in microtubules", J. Biolog. Phys., 23(3), 171-179. https://doi.org/10.1023/A:1005092601078.   DOI
17 Qian, X.S., Zhang, J.Q. and Ru, C.Q. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.   DOI
18 Sirenko, Y.M., Stroscio, M.A. and Kim, K.W. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.   DOI
19 Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1063/1.5086216.   DOI
20 Schliwa, M. and Woehlke, G. (2003), "Molecular motors", Nat., 422(6933), 759-765. https://doi.org/10.1016/j.cub.2007.04.025.   DOI
21 Stehn, J.R., Haass, N.K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., ... & Allanson, M (2013), "A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells", Cancer Res., 73(16), 5169-5182. https://doi.org/10.1158/0008-5472.   DOI
22 Taj, M. and Zhang, J. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.   DOI
23 Taj, M. and Zhang, J. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Biophys. Res. Commun., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072.   DOI
24 Taj, M. and Zhang, J. (2014), "Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model", J. Mech. Behav. Biomed. Mater., 30, 300-305. https://doi.org/10.1016/j.jmbbm.2013.11.011.   DOI
25 Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., ... & Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.   DOI
26 Raff, M., Alberts, B., Lewis, J., Johnson, A. and Roberts, K. (2002). Molecular Biology of the Cell, 4th Edition, National Center for Biotechnology InformationOs Bookshelf.
27 Tseng, Y., Schafer, B.W., Almo, S.C. and Wirtz, D. (2002), "Functional synergy of actin filament cross-linking proteins", J. Biolog. Chem., 277(28), 25609-25616. https://doi.org/10.1017/CBO9780511809217.   DOI
28 Taj, M.S.M. (2019), "Vibrational analysis of microtubules embedded within viscoelastic, edium using orthotropic Kelvin like model", Sains Malaysiana, 48(12), 2841-2847. http://dx.doi.org/10.17576/jsm-2019-4812-25.   DOI
29 Takasone, T., Juodkazis, S., Kawagishi, Y., Yamaguchi, A., Matsuo, S., Sakakibara, H., ... & Misawa, H. (2002), "Flexural rigidity of a single microtubule", JPN J. Appl. Phys., 41(5R), 3015. https://doi.org/10.1143/JJAP.41.3015.   DOI
30 Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-hill.
31 Tuszynski, J.A., Luchko, T., Portet, S. and Dixon, J.M. (2005), "Anisotropic elastic properties of microtubules", Eur. Phys. J. E, 17(1), 29-35. https://doi.org/10.1140/epje/i2004-10102-5.   DOI
32 van der Lebenskraft, G.D.L. "Biological science" redirects here. It is not to be confused with life science. For other uses, see Biology (disambiguation).
33 Vaziri, A., Lee, H. and Mofrad, M.K. (2006), "Deformation of the cell nucleus under indentation: mechanics and mechanisms", J. Mater. Res., 21(8), 2126-2135. https://doi.org/10.1557/JMR.2006.0262.   DOI
34 Venier, P., Maggs, A.C., Carlier, M.F. and Pantaloni, D. (1994), "Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations", J. Biolog. Chem., 269(18), 13353-13360. https://doi.org/10.1529/biophysj.103.038877.   DOI
35 Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901.   DOI
36 Crowley, C.A., Curnutte, J.T., Rosin, R.E. andre-Schwartz, J., Gallin, J.I., Klempner, M., ... & Babior, B.M. (1980), "An inherited abnormality of neutrophil adhesion: its genetic transmission and its association with a missing protein", New England J. Medic., 302(21), 1163-1168. https://doi.org/10.1056/NEJM198005223022102.   DOI
37 Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002), Cell Movements and the Shaping of the Vertebrate Body. In Molecular Biology of the Cell, 4th Edition, Garland Science.
38 Almor, J.M., Baulies, M.D., Urgell, J.D., Colet, J.C., Capdevila, M.C. and Cortada, J.B. (2004), "Prevalence and clinical course of patients in Spain with acute myocardial infarction and severely depressed ejection fraction who meet the criteria for automatic defibrillator implantation", Revista Espanola de Cardiologia, 57(7), 705-708. https://doi.org/10.1016/S1885-5857(06)60297-1.   DOI
39 Bennett, V. and Baines, A.J. (2001), "Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues", Physiol. Rev., 81(3), 1353-1392. https://doi.org/10.1152/physrev.2001.81.3.1353.   DOI
40 Carter, N.J. and Cross, R. (2005), "Mechanics of the kinesin step", Nature, 435(7040), 308-312. https://doi.org/10.1038/nature03528.   DOI
41 Gu, B., Mai, Y.W. and Ru, C.Q. (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3-4), 195-209. https://doi.org/10.1007/s00707-008-0121-8.   DOI
42 Zhang, Q., Jiang, B., Xiao, Z., Cui, W. and Liu, J. (2019), "Post-buckling analysis of compressed rods in cylinders by using dynamic relaxation method", Int. J. Mech. Sci., 159, 103-115. https://doi.org/10.1016/j.ijmecsci.2019.05.040.   DOI
43 Elzinga, M., Collins, J.H., Kuehl, W.M. and Adelstein, R.S. (1973), "Complete amino-acid sequence of actin of rabbit skeletal muscle", Proc. Nat. Acad. Sci., 70(9), 2687-2691. https://doi.org/10.1073/pnas.70.9.2687.   DOI
44 Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P. and Weitz, D.A. (2004), "Elastic behavior of cross-linked and bundled actin networks", Sci., 304(5675), 1301-1305. https://doi.org/10.1126/science.1095087.   DOI
45 Gardel, M.L., Shin, J.H., MacKintosh, F.C., Mahadevan, L., Matsudaira, P. and Weitz, D.A. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell. Biol., 120(4), 923-934. https://doi.org/10.1529/biophysj.103.038877.   DOI
46 Glazov, M.M., Sherman, E.Y. and Dugaev, V.K. (2010), "Two-dimensional electron gas with spin-orbit coupling disorder", Physica E: Low Dimens. Syst. Nanostruct., 42(9), 2157-2177. https://doi.org/10.1038/srep45346.   DOI
47 Hanukogle, I., Tanese, N. and Fuchs, E. (1983), "Complementary DNA sequence of a human cytoplasmic actin: interspecies divergence of 3' non-coding regions", J. Molecul. Biol., 163(4), 673-678. https://doi.org/10.1016/0022-2836(83)90117-1.   DOI
48 Gunning, P., Ponte, P., Okayama, H., Engel, J., Blau, H. and Kedes, L (1983), "Isolation and characterization of full-length cDNA clones for human alpha- beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed", Molecul. Cell. Bio., 3(5), 787-795. https://doi.org/10.1128/mcb.3.10.1783.   DOI
49 Gunning, P.W., Ghoshdastider, U., Whitaker, S., Popp, D. and Robinson, R.C. (2015), "The evolution of compositionally and functionally distinct actin filaments", J. Cell Sci., 128(11), 2009-2019. https://doi.org/10.1242/jcs.165563.   DOI
50 Gurovich, V.T. and Fel, L.G. (2009), "Landau-Stanyukovich rule and the similarity parameter for converging shocks", JETP Lett., 89(1), 14-18. https://doi.org/10.1134/S0021364009010044.   DOI
51 Helbig, D., Silva, C.C.C.D., Real, M.D.V., Santos, E.D.D., Isoldi, L.A. and Rocha, L.A.O. (2016), "Study about buckling phenomenon in perforated thin steel plates employing computational modeling and constructal design method", Lat. Am. J. Solid. Struct., 13(10), 1912-1936. http://dx.doi.org/10.1590/1679-78252893.   DOI
52 Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biol., 8(7), 562-573. https://doi.org/10.1038/nrm2197.   DOI
53 Hussain, M. and Naeem, M. (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality", Perspective of Carbon Nanotubes, IntechOpen. https://doi.org/10.5772/intechopen.85948.
54 Hussain, M. and Naeem, M.N. (2020b), "Vibration characteristics of zigzag FGM single-walled carbon nanotubes based on Ritz method with ring-stiffeners", Indian Journal of Physics.
55 Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
56 Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compo. Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.   DOI
57 Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.   DOI
58 Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), "Twisted growth and organization of cortical microtubules", J. Plant Res., 120(1), 61-70. https://doi.org/10.1371/journal.pone.0160202.   DOI
59 Hussain, M. and Naeem., M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.   DOI
60 Hussain, M. and Naeem, M.N. (2020), "Mass density effect on vibration of zigzag and chiral SWCNTs: A theoretical study", Journal of Sandwich Structures & Materials, 1099636220906257. https://doi.org/10.1177/1099636220906257.
61 Jerusalem, A. and Dao, M. (2012), "Continuum modeling of a neuronal cell under blast loading", Acta Biomaterialia, 8(9), 3360-3371. https://doi.org/10.1016/j.actbio.2012.04.039.   DOI
62 Katariya, P.V., Das, A. and Panda, S.K. (2018), "Buckling analysis of SMA bonded sandwich structure-using FEM", IOP Conf. Ser.: Mater. Sci. Eng., 338(1), 012035.   DOI
63 Jiang, H. and Zhang, J. (2008), "Mechanics of microtubule buckling supported by cytoplasm", J. Appl. Mech., 75(6), 061019. https://doi.org/10.1115/1.2966216.   DOI
64 Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.   DOI
65 Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202.   DOI
66 Hussain, M. and Naeem, M.N. (2020c), "Accurate compact solution of fluid-filled FG cylindrical shell inducting fluid term: Frequency analysis", Journal of Sandwich Structures and Materials.