Browse > Article
http://dx.doi.org/10.12989/acc.2018.6.3.221

Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements-A review  

Gayana, B.C. (Department of Mining Engineering, National Institute of Technology Karnataka)
Chandar, Karra Ram (Department of Mining Engineering, National Institute of Technology Karnataka)
Publication Information
Advances in concrete construction / v.6, no.3, 2018 , pp. 221-243 More about this Journal
Abstract
Utilization of mine waste rocks and tailings in concrete as aggregates will help in sustainable and greener development. The literature shows the potential use of iron ore tailings as a replacement of natural fine aggregates. As natural sand reserves are depleting day by day, there is a need for substitution for sand in concrete. A comprehensive overview of the published literature on the use of iron ore waste and tailings and other industrial waste in concrete is being presented. The effect of various properties such as workability, compressive strength, split tensile strength, flexural strength, durability and microstructure of concrete have been presented in this paper.
Keywords
concrete; iron ore waste and tailings; strength; durability;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496.   DOI
2 Fan, J., Cao, D., Jing, Z., Zhang, Y., Pu, L. and Jing, Y. (2014), "Synthesis and microstructure analysis of autoclaved aerated concrete with carbide slag addition", J. Wuhan Univ. Technol., 10(29), 1005-1010.
3 Ganjian, E., Khorami, M. and Maghsoudi, A.A. (2009), "Scrap-tyre-rubber replacement for aggregate and filler in concrete", J. Constr. Build. Mater., 23(5), 1828-1836.   DOI
4 Gul, R., Okuyucu, E., Turkmen, I. and Aydin, A.C. (2007), "Thermo-mechanical properties of fiber reinforced raw perlite concrete", J. Mater. Lett., 61, 5145-5149.   DOI
5 Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fibre concrete with and without silica fume", J. Clean. Product., 112, 702-711.   DOI
6 Hernandez-Olivares, F. and Baluenga, G. (2004), "Fire performance of recycled rubber- filled high-strength concrete", J. Cement Concrete Res., 34, 109-117.   DOI
7 http://www.allindiarubber.net/
8 http://www.ce.memphis.edu/1101/notes/concrete/PCA_manual/Chap06.pdf
9 https://en.wikipedia.org/wiki/Iron_ore
10 https://www.cia.gov/library/ publications/the-world-factbook/geos/in.html
11 Huang, X., Ranade, R., Ni, W. and Li, V. (2013), "Development of green engineered cementitious composites using iron ore tailings as aggregates", J. Constr. Build. Mater., 44, 757-764.   DOI
12 Fontes, W.C., Mendes, J.C., Da Silva, S.N. and Peixoto, R.A.F. (2016), "Mortars for laying and coating produced with iron ore tailings from tailing dams", J. Constr. Build. Mater., 112, 988-995.   DOI
13 Huang, X.Y., Ni, W., Cui, W.H., Wang, Z.J. and Zhu, L.P. (2012), "Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag", J. Constr. Build. Mater., 27, 1-5.   DOI
14 Ismail, Z.Z. and Al-Hashmi, E.A. (2008), "Use of waste plastic in concrete mixture as aggregate replacement", J. Waste Manage., 28, 2041-2047.   DOI
15 Juwarkar, A.A., Singh, S.K., Dubay, K. and Nimje, M. (2003), "Reclamation of iron mine spoil dumps using integrated biotechnological approach", Proceedings of the National Seminar on Status of Environmental Management in Mining Industry, BHU, 197-212.
16 Kardos, A.J. and Durham, S.A. (2015), "Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications", J. Constr. Build. Mater., 98, 832-845.   DOI
17 Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213.   DOI
18 Kumar, S., Gupta, R.C. and Shrivastava, S. (2016), "Strength, abrasion and permeability studies on cement concrete containing quartz sandstone coarse aggregates", J. Constr. Build. Mater., 125, 884-891.   DOI
19 Kurama, H., Topcu, I.B. and Karakurt, C. (2009), "Properties of the autoclaved aerated concrete produced from coal bottom ash", J. Mater. Proc. Technol., 209(2), 767-773.   DOI
20 Li, C., Sun, H.H., Bai, J. and Li, L.T. (2010), "Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting", J. Hazard. Mater., 174(1-3), 71-77.   DOI
21 Li, D.Z., Ni, W., Zhang, J.W., Wu, H. and Zhang, Y.Y. (2011), "Phase transformation of iron ore tailings during autoclaved curing", J. Chin. Ceram. Soc., 39(4), 708-804.
22 Li, M. and Li, V.C. (2009), "Influence of material ductility on the performance of concrete repair", ACI Mater. J., 106(5), 419-428.
23 Licsko, I., Lois, L. and Szebenyi, G. (1999), "Tailings as a source of environmental pollution", J. Water Sci. Technol., 39(10-11), 333-336.   DOI
24 Liu, F., Meng, L.Y., Ning, G.F. and Li, L.J. (2015), "Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement", J. Constr. Build. Mater., 95, 207-217.   DOI
25 Liwu, M. and Min, D. (2006), "Thermal behavior of cement matrix with high-volume mineral admixtures at early hydration age", J. Cement Concrete Res., 36, 1992-1998.   DOI
26 Lottermoser, B.G. (2011), "Recycling, reuse and rehabilitation of mine wastes", Elem., 7(6), 405-410..   DOI
27 Ma, B.G., Cai, L.X., Li, X.G. and Jian, S.W. (2016), "Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products", J. Clean. Prod., 127, 162-171.   DOI
28 Maiti, S.K., Nandhini, S. and Das, M. (2005), "Accumulation of metals by naturally growing herbaceous and tree species in iron ore tailings", Int. J. Environ. Stud., 62(5), 595-603.
29 Meagher, T., Shanahan, N., Buidens, D., Riding, K.A. and Zayed, A. (2015), "Effects of chloride and chloride-free accelerators combined with typical admixtures on the early-age cracking risk of concrete repair slabs", J. Constr. Build. Mater., 94, 270-279.   DOI
30 Mirza, W.H. and Al-Noury, S.I. (1986), "Utilisation of Saudi sands for aerated concrete production", Int. J. Cement Compos. Light Weight Concrete, 8(2), 81-85.   DOI
31 Moreno, L. and Neretnieks, I. (2006), "Long-term environmental impact of tailings deposits". J. Hydrometal., 83(3), 176-183.   DOI
32 MORTH 2012A: www.morth.nic.in/Annual Report 2011-12.
33 Mostafa, N.Y. (2005), "Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete", J. Cement Concrete Res., 35(7), 1349-1357.   DOI
34 Naik, T.R. (2008), "Sustainability of concrete", Pract. Period. Struct. Des. Constr., 13(2), 98-103.   DOI
35 Oikonomou, N. and Mavridou, S. (2009), "Improvement of choloride ion penetration resistance in cement mortars modified with rubber from worn automobiles tires", J. Cement Concrete Compos., 31, 403-407.   DOI
36 Oktay, H., Yumrutas, R. and Akpolat, A. (2015), "Mechanical and thermo-physical properties of lightweight aggregate concretes", J. Constr. Build. Mater., 96, 217-225.   DOI
37 Omar, O.M., Elhameed, G.D.A., Sherif, M.A. and Mohamadien, H.A. (2012), "Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties", Hous. Board Nat. Res. Center, 8, 193-203.
38 Park, T.S. (2003), "Application of construction and building debris as base and subbase materials in rigid pavement", J. Transp. Eng., 129(5), 558-563.   DOI
39 Raghavan, D., Huynh, H. and Ferraris, C.F. (1998), "Workability, mechanical properties and chemical stability of a recycled tire rubber-filled cementitious composite", J. Mater. Sci., 33(7), 1745-1752.   DOI
40 Ram Chandar, K., Gayana, B.C. and Sainath, V. (2016), "Experimental investigation for partial replacement of fine aggregates in concrete with sandstone", J. Adv. Concrete Constr., 4(4), 243-261.   DOI
41 Ram Chandar, K., Raghunandan, M.E. and Manjunath, B. (2016), "Partial replacement of fine aggregates with laterite in GGBS-blended-concrete", J. Adv. Concrete Constr., 4(3), 221-230.   DOI
42 Ramanaidou, E.R. and Wells, M.A. (2014), Sedimentary Hosted Iron Ore, Eds. Holland, H.D. and Turekian, K.K., Treatise on Geochemistry, Second Edition, Elsevier, Oxford.
43 Ravikumar, C.M., Kumar, A., Prashanth, M.H. and Reddy, D.V. (2012), "Experimental studies on iron ore tailings based interlocking paver blocks", Int. J. Earth Sci. Eng., 5(3), 501-504.
44 Sastry, V.R. and Ram Chandar, K. (2013), "Dump stability analysis of an open cast coal mining project", Min. Eng. J., 15(1), 16-23.
45 Sengul, O., Azizi, S., Karaosmanoglu, F. and Tasdemir, M. A. (2011), "Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete", J. Energy Build., 43, 671-676.   DOI
46 Shaikh, F., Kerai, S. and Kerai, S. (2015), "Effect of micro silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)", J. Adv. Concrete Constr., 3, 317-331.   DOI
47 Shettima, A.U., Hussin, M.W., Ahmad, Y. and Mirza, J. (2016), "Evaluation of iron ore tailings as replacement for fine aggregate in concrete", Constr. Build. Mater., 120, 72-79.   DOI
48 Shetty, K.K., Nayak, G. and Vijayan, V. (2014), "Effect of red mud and iron ore tailings on the strength of self-compacting concrete", Eur. Scientif. J., 10(21), 168-176.
49 Siddique, R. (2014), "Utilization of industrial by-products in concrete", Procedia Eng., 95, 335-347.   DOI
50 Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber-An overview", J. Waste Manage., 24, 563-569.   DOI
51 Silva, F.L., Araujo, F.G.S., Texeira, M.P., Gomes, R.C. and Vonkruger, F.L. (2014), "Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic", J. Ceram. Int., 40, 16085-16089.   DOI
52 Sirkeci, A.A., Gul, A. and Bulut, G. (2006), "Recovery of Co, Ni and Cu from the tailings of divrigi iron ore concentrator", J. Min. Proc. Extract. Metal. Rev., 27(2), 131-141.   DOI
53 Skarzynska, K.M. (1995a), "Reuse of coal mining wastes in civil engineering. part 1. properties of minestone", J. Waste Manage., 15(2), 3-42.   DOI
54 Skarzynska, K.M. (1995b), "Reuse of coal mining wastes in civil engineering. part 2. utilization of minestone", J. Waste Manage., 15(2), 83-126.   DOI
55 Son, K.S., Hajirasouliha, I. and Pilakoutas, K. (2011), "Strength and deformability of waste tyre rubber filled reinforced concrete columns", J. Constr. Build. Mater., 25(1), 218-226.   DOI
56 Sun, J.S., Dou, Y.M., Chen, Z.X. and Yang, C.F. (2011), "Experimental study on the performances of cement stabilized iron ore tailing gravel in highway application", J. Appl. Mech. Mater., 97-98, 425-428.   DOI
57 Sunil, B.M., Manjunatha, L.S., Lolitha, R. and Subhash, C.Y. (2015), "Potential use of mine tailings and fly ash in concrete", J. Adv. Concrete Constr., 3, 55-69.   DOI
58 Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", J. Constr. Build. Mater., 59, 204-212.   DOI
59 Thomas, B.S., Gupta, R.C., Mehra, P. and Kumar, S. (2015), "Performance of high strength rubberized concrete in aggressive environment", J. Constr. Build. Mater., 83, 320-326.   DOI
60 Topcu, I.B. (1995), "The properties of rubberized concrete", J. Cement Concrete Res., 25, 304-310.   DOI
61 USGS Mineral Commodity Summaries, 2011.
62 USGS Mineral Commodity Summaries, 2013
63 Wang, C.L., Ni, W., Zhang, S.Q., Wang, S., Gai, G.S. and Wang, W.K. (2016), "Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings", J. Constr. Build. Mater., 104, 109-115.   DOI
64 Wang, J.Z. and Wu, C. (2000), "Effect of energy saving and formation of portland cement clinker using irontailings as raw materials", J. Shenyang Arch. Civil Eng. Inst., 16(2), 112-114.
65 Yellishetty, M., Karpe, V., Reddy, E.H. and Subhash, K.N. (2008), "Reuse of iron ore mineral wastes in civil engineering constructions: A case study - resources", J. Conserv. Recycl., 52, 1283-1289.   DOI
66 Zhang, S. (2006), "Current situation and comprehensive utilization of iron ore tailing resources", J. Min. Sci., 42(4), 403-408.   DOI
67 Zhao, S., Fan, J. and Sun, W. (2014), "Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete", J. Constr. Build. Mater., 50, 540-548.   DOI
68 Zheng, Y.C., Ni, W., Xu, L., Li, D.Z. and Yang, J.H. (2010), "Mechano-chemical activation of iron ore tailings and preparation of high-strength construction materials", J. Univ. Sci. Technol. Beijing, 32(4), 504-507.
69 Zhu, L.P., Ni, W., Huang, D., Hui, M. and Gao, S.J. (2011), "Whole-tailings backfilling materials with fly ash", J. Univ. Sci. Technol. Beijing, 33(10), 190-1196.
70 Yang, C., Cui, C., Qin, J. and Cui, X. (2014), "Characteristics of the fired bricks with low-silicon iron tailings", J. Constr. Build. Mater., 70, 36-42.   DOI
71 Anderson, D.J., Smith, S.T. and Au, F.T. (2016), "Mechanical properties of concrete utilizing waste ceramic as coarse aggregate", J. Constr. Build. Mater., 117, 20-28.   DOI
72 Andre, H., Urs, E. and Thomas, M. (1999), "Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete", J. Cement Concrete Res., 29(3), 297-302.   DOI
73 Arora, S. and Singh, S.P. (2016), "Analysis of flexural fatigue failure of concrete made with 100% coarse recycled concrete aggregates", J. Constr. Build. Mater., 102, 782-791.   DOI
74 Batayneh, M., Marie, I. and Asi, I. (2007), "Use of selected waste materials in concrete mixes", J. Waste Manage., 27, 1870-1876.   DOI
75 Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T. and Queneudec, M. (2013), "Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions", J. Constr. Build. Mater., 47, 146-158.   DOI
76 Bhattacharya, A.K. (2005), "Scope of concrete roads in India", Keynote address at National workshop on sustainability of road infrastructure-Scope of concrete roads jointly organized by CMA India and ICI, Kolkata.
77 Cai, J.W., Zhang, S.B., Hou, G.X. and Wang, C.M. (2009), "Effects of ferrous mill tailings as aggregates on workability and strength of concrete", J. Wuhan Univ. Technol., 31(7), 104-107.
78 Cao, W. (2007), "Study on properties of recycled tire rubber modified asphalt mixtures using dry process", J. Constr. Build. Mater., 21, 1011-1015.   DOI
79 Chakravarthy, S.M. and Kadiyalli, L.R. (1989), "Economics of concrete roads", Ind. Concrete J., 63, 239-243.
80 Chandra, S. and Berntsson, L. (2002), Lightweight Aggregate Concrete, Noyes Publications/William Andrew Publishing, NY.
81 CMA (2007), "Fuel saving on concrete pavement", http://www.cmaindia.org, Cement Manufacturers Association India.
82 CPAM (2012), http://www.concreteisbetter.com/vs.html, Concrete Paving Association of Minnesota.
83 da Silvaa, F.L., Araujoa, F.G.S. and Teixeiraa, M.P. (2014), "Study of the recovery and recycling of tailings from the concentration of iron ore for the production of ceramic", J. Ceram. Int., 40, 16085-16089.   DOI
84 Das, B., Reddy, P.S.R. and Misra, V.N. (2002), "Recovery of iron values from tailing dumps adopting hydrocyclone and magnetic separation techniques", J. Australas Inst. Min. Metal., 2, 285-289.
85 Das, S.K., Kumar, S. and Ramachandrarao, P. (2000), "Exploitation of iron ore for the development of ceramic tiles", J. Waste Manage., 20, 725-729.   DOI
86 Dovi, V.G., Friedler, F., Huisingh, D. and Kleme, J.J. (2009), "Cleaner energy for sustainable future", J. Clean. Product., 17, 889-895.   DOI
87 Duan, P., Yan, C., Zhou, W. and Ren, D. (2016), "Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle", J. Constr. Build. Mater., 118, 76-88.   DOI
88 Dudka, S. and Adriano, D.C. (1997), "Environmental impacts of metal ore mining and processing: a review", J. Environ. Qual., 26, 590-602.