Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.1.001

Nondestructive tests for defections detection of nanoparticles in cement-based materials: A review  

Kaloop, Mosbeh R. (Department of Civil and Environmental Engineering, Incheon National University)
Elrahman, Mohamed Abd (Structural Engineering Department, Mansoura University)
Hu, Jong Wan (Department of Civil and Environmental Engineering, Incheon National University)
Publication Information
Advances in nano research / v.12, no.1, 2022 , pp. 1-23 More about this Journal
Abstract
To date, nondestructive tests (NDT) applications and advances in detecting the dispersion and defections of the nano concrete (NC) materials fields are very limited. The current paper provides a review of the dispersion efficiency of nanomaterials in cement-based materials and how NDT can be efficiently used in detecting and visualizing the defections and dispersions of NC. The review identifies the characteristics of different types of nanoparticles used in NC. Nanomaterials influences on concrete characteristics and their dispersion degree are presented and discussed. The main aim of this article is to present and compare the common NDT that can be used for detecting and visualizing the defections and dispersions of different kinds of nanomaterials utilized in NC. The different microscopy and X-ray methods are explicitly reviewed and compared. Based on the collected data, it can be concluded that the fully detecting and visualizing of NC defections and dispersions have not been fully discovered and that needs further investigations. So, the distinction of this paper lies in defining NDT that can be employed for detecting and/or visualizing NC defections and dispersions.
Keywords
defect detection and visualization; dispersion; microscopy; nondestructive tests; pulse-ultrasonic; X-ray;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Turner, J.A. (2005), "Ultrasonic studies of the fundamental mechanisms of recrystallization and sintering of metals", Report No. DE-FG02-01ER45890; University of Nebraska-Lincoln.
2 Hanke, R., Fuchs, T., Salamon, M. and Zabler, S. (2016), X-ray Microtomography for Materials Characterization, in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Woodhead Publishing, Sawston, U.K. https://doi.org/10.1016/B978-0-08-100040-3.00003-1.   DOI
3 Kawashima, S., Seo, J.-W.T., Corr, D., Hersam, M.C. and Shah, S.P. (2014), "Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems", Mater. Struct., 47(6), 1011-1023. https://doi.org/10.1617/s11527-013-0110-9.   DOI
4 Khayat, K.H., Meng, W., Vallurupalli, K. and Teng, L. (2019), "Rheological properties of ultra-high-performance concrete - An overview", Cement Concrete Res., 124, 105828. https://doi.org/10.1016/j.cemconres.2019.105828.   DOI
5 Kim, B. and Potma, E.O. (2019), "Laser heating of cantilevered tips: Implications for photoinduced force microscopy", Phys. Rev. B, 100(19), 195416. https://doi.org/10.1103/PhysRevB.100.195416.   DOI
6 Leite, M.B. and Monteiro, P.J.M. (2016), "Microstructural analysis of recycled concrete using X-ray microtomography", Cement Concrete Res., 81, 38-48. https://doi.org/10.1016/j.cemconres.2015.11.010.   DOI
7 Balazs, G.L., Lubloy, E. and Foldes, T. (2018), "Evaluation of concrete elements with X-ray computed tomography", J. Mater. Civ. Eng., 30(9), 06018010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002389.   DOI
8 Arel, H.S. and Thomas, B.S. (2017), "The effects of nano- and micro-particle additives on the durability and mechanical properties of mortars exposed to internal and external sulfate attacks", Results Phys., 7, 843-851. https://doi.org/10.1016/j.rinp.2017.02.009.   DOI
9 Ashok, M., Parande, A.K. and Jayabalan, P. (2017), "Strength and durability study on cement mortar containing nano materials", Adv. Nano Res., 5(2), 99-111. https://doi.org/10.12989/anr.2017.5.2.099.   DOI
10 Atahan, H.N. and Dikme, D. (2011), "Use of mineral admixtures for enhanced resistance against sulfate attack", Constr. Build. Mater., 25(8), 3450-3457. https://doi.org/10.1016/j.conbuildmat.2011.03.036.   DOI
11 Balke, N. and Tselev, A. (2018), Functional Material Properties of Oxide Thin Films Probed by Atomic Force Microscopy on the Nanoscale in Metal Oxide-Based Thin Film Structures, Elsevier, 181-201. https://doi.org/10.1016/B978-0-12-811166-6.00008-X.   DOI
12 Ban, C.C., Khalaf, M.A., Ramli, M., Ahmed, N.M., Abunahel, B.M., Dawood, E.T. and Ameri, F. (2020), "Effect of nano-silica slurry on engineering, X-ray and γ-ray attenuation characteristics of steel slag high-strength heavyweight concrete", Nanotechnol. Rev., 9(1), 1245-1264. https://doi.org/10.1515/ntrev-2020-0098.   DOI
13 Ghafari, E., Costa, H. and Julio, E. (2015b), "Critical review on eco-efficient ultra high performance concrete enhanced with nano-materials", Constr. Build. Mater., 101, 201-208. https://doi.org/10.1016/j.conbuildmat.2015.10.066.   DOI
14 Heikal, M., Ismail, M.N. and Ibrahim, N.S. (2015), "Physicomechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles", Constr. Build. Mater., 91, 232-242. https://doi.org/10.1016/j.conbuildmat.2015.05.036.   DOI
15 Horszczaruk, E., Sikora, P., Cendrowski, K. and Mijowska, E. (2017), "The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates", Constr. Build. Mater., 137, 420-431. https://doi.org/10.1016/j.conbuildmat.2017.02.003.   DOI
16 Ghafari, E., Arezoumandi, M., Costa, H. and Julio, E. (2015a), "Influence of nano-silica addition on durability of UHPC", Constr. Build. Mater., 94, 181-188. https://doi.org/10.1016/j.conbuildmat.2015.07.009.   DOI
17 Ghafoori, N., Batilov, I.B. and Najimi, M. (2016), "Sulfate resistance of nanosilica and microsilica contained mortars", ACI Mater. J., 113(4). https://doi.org/10.14359/51688989.   DOI
18 Gonzalez, J.F., Antartis, D.A., Chasiotis, I., Dillon, S.J. and Lambros, J. (2018), "In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation", J. Power Sources, 381, 181-189. https://doi.org/10.1016/j.jpowsour.2018.01.056.   DOI
19 Gonzalez, M., Tighe, S.L., Hui, K., Rahman, S. and de Oliveira Lima, A. (2016), "Evaluation of freeze/thaw and scaling response of nanoconcrete for Portland Cement Concrete (PCC) pavements", Constr. Build. Mater., 120, 465-472. https://doi.org/10.1016/j.conbuildmat.2016.05.043.   DOI
20 Lim, S. and Mondal, P. (2015), "Effects of nanosilica addition on increased thermal stability of cement-based composite", ACI Mater. J., 112(2). https://doi.org/10.14359/51687177.   DOI
21 Lu, H. (2017), "X-ray computed tomography assessment of air void distribution in concrete by X-ray computed tomography assessment of air void distribution in concrete", PhD thesis, University of, Toronto, Toronto.
22 Khan, M.K., Wang, Q.Y. and Fitzpatrick, M.E. (2016), "Atomic force microscopy (AFM) for materials characterization", in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Wooheas Publishing, Sawstaon, U.K. https://doi.org/10.1016/B978-0-08-100040-3.00001-8.   DOI
23 Yang, L.Y., Jia, Z.J., Zhang, Y.M. and Dai, J.G. (2015), "Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes", Cement Concrete Compos., 57, 1-7. https://doi.org/10.1016/j.cemconcomp.2014.11.009.   DOI
24 Xiao, H., Zhang, F., Liu, R., Zhang, R., Liu, Z. and Liu, H. (2019), "Effects of pozzolanic and non-pozzolanic nanomaterials on cement-based materials", Constr. Build. Mater., 213, 1-9. https://doi.org/10.1016/j.conbuildmat.2019.04.057.   DOI
25 Xu, P., Cai, W. and Wang, R. (2011), "Scanning near-field acoustic microscope and its application", Sci. China Technol. Sci., 54(1), 126-130. https://doi.org/10.1007/s11431-010-4147-5.   DOI
26 Yamanaka, K. and Tsuji, T. (2013), "Ultrasonic atomic force microscopy UAFM", in Nanosci. Technol., 155-187. https://doi.org/10.1007/978-3-642-27494-7_6.   DOI
27 Yazdanbakhsh, A., Grasley, Z., Tyson, B. and Al-Rub, R.K.A. (2010), "Distribution of carbon nanofibers and nanotubes in cementitious composites", Transp. Res. Rec., 2142(1), 89-95. https://doi.org/10.3141/2142-13.   DOI
28 Yazdanbakhsh, A., Grasley, Z., Tyson, B. and Abu Al-Rub, R. (2012), "Challenges and benefits of utilizing carbon nanofilaments in cementitious materials", J. Nanomater., 2012, 1-8. https://doi.org/10.1155/2012/371927.   DOI
29 Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2", Cement Concrete Res., 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004.   DOI
30 Farzampour, A. (2017), "Temperature and humidity effects on behavior of grouts", Adv. Concr. Constr., 5(6), 659-669. https://doi.org/10.12989/acc.2017.5.6.659.   DOI
31 Guo, R., Suo, Y., Xia, H., Yang, Y., Ma, Q. and Yan, F. (2021), "Study of piezoresistive behavior of smart cement filled with graphene oxide", Nanomaterials, 11(1), 206. https://doi.org/10.3390/nano11010206.   DOI
32 Kutschera, M., Nicoleau, L. and Brau, M. (2011), Nano-optimized Construction Materials by Nano-seeding and Crystallization Control in Nanotechnology in Civil Infrastructure, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-16657-0_6.   DOI
33 Gopalakrishnan, K., Ceylan, H. and Inanc, F. (2007), "Using X-ray computed tomography to study paving materials", Proceedings of the Institution of Civil Engineers-Construction Materials, 160(1), 15-23. https://doi.org/10.1680/coma.2007.160.1.15.   DOI
34 Chae, S.R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R. and Monteiro, P.J.M. (2013), "Advanced nanoscale characterization of cement based materials using X-Ray synchrotron radiation: A review", Int. J. Concr. Struct. Mater., 7(2), 95-110. https://doi.org/10.1007/s40069-013-0036-1.   DOI
35 Chandrasekaran, V. (2019), "Tomography of reinforced concrete", Mater. Des. Process. Commun., 1(6), e92. https://doi.org/10.1002/mdp2.92.   DOI
36 Chen, B., Lin, W., Liu, X., Iacoviello, F., Shearing, P. and Robinson, I. (2019), "Pore structure development during hydration of tricalcium silicate by X-ray nano-imaging in three dimensions", Constr. Build. Mater., 200, 318-323. https://doi.org/10.1016/j.conbuildmat.2018.12.120.   DOI
37 Hamed, N., El-Feky, M.S., Kohail, M. and Nasr, E.S.A.R. (2019), "Effect of nano-clay de-agglomeration on mechanical properties of concrete", Constr. Build. Mater., 205, 245-256. https://doi.org/10.1016/j.conbuildmat.2019.02.018.   DOI
38 Stan, G., Krylyuk, S., Davydov, A.V., Vaudin, M.D., Bendersky, L.A. and Cook, R.F. (2009), "Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging", Ultramicroscopy, 109(8), 929-936. https://doi.org/10.1016/j.ultramic.2009.03.025.   DOI
39 du Plessis, A. and Boshoff, W.P. (2019), "A review of X-ray computed tomography of concrete and asphalt construction materials", Constr. Build. Mater., 199, 637-651. https://doi.org/10.1016/j.conbuildmat.2018.12.049.   DOI
40 Reches, Y., Thomson, K., Helbing, M., Kosson, D.S. and Sanchez, F. (2018), "Agglomeration and reactivity of nanoparticles of SiO2, TiO2, Al2O3, Fe2O3 and clays in cement pastes and effects on compressive strength at ambient and elevated temperatures", Constr. Build. Mater., 167, 860-873. https://doi.org/10.1016/j.conbuildmat.2018.02.032.   DOI
41 Su, Y., Wu, C., Li, J., Li, Z.X. and Li, W. (2017), "Development of novel ultra-high performance concrete: From material to structure", Constr. Build. Mater., 135, 517-528. https://doi.org/10.1016/j.conbuildmat.2016.12.175.   DOI
42 Oesch, T., Weise, F. and Bruno, G. (2020), "Detection and quantification of cracking in concrete aggregate through virtual data fusion of x-ray computed tomography images", Materials, 13(18), 3921. https://doi.org/10.3390/ma13183921.   DOI
43 Bernardes, E.E., Mantilla Carrasco, E.V., Vasconcelos, W.L. and de Magalhaes, A.G. (2015), "X-ray microtomography (μ-CT) to analyze the pore structure of a Portland cement composite based on the selection of different regions of interest", Constr. Build. Mater., 95, 703-709. https://doi.org/10.1016/j.conbuildmat.2015.07.128.   DOI
44 Zinin, P.V., Kutuza, I.B. and Titov, S.A. (2018), "Near-field defects imaging in thin dlc coatings using high-frequency scanning acoustic microscopy", J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 12(6), 1285-1293. https://doi.org/10.1134/S1027451018050737.   DOI
45 Fan, Y., Zhang, S., Wang, Q. and Shah, S.P. (2015), "Effects of nano-kaolinite clay on the freeze-thaw resistance of concrete", Cement Concrete Compos., 62, 1-12. https://doi.org/10.1016/j.cemconcomp.2015.05.001.   DOI
46 Al-Jabri, K. and Shoukry, H. (2014), "Use of nano-structured waste materials for improving mechanical, physical and structural properties of cement mortar", Constr. Build. Mater., 73, 636-644. https://doi.org/10.1016/j.conbuildmat.2014.10.004.   DOI
47 Almajhadi, M. and Wickramasinghe, H.K. (2017), "Contrast and imaging performance in photo induced force microscopy", Opt. Express, 25(22), 26923. https://doi.org/10.1364/OE.25.026923.   DOI
48 Barreto, M. and Brandao, P. (2014), "Micro and nanostructureal characteristization of surface and interfaces of portland cement mortars using atomic force microscopy", Proceeding of the 21o CBECIMAT - Congr. Bras. Eng. e Ciencia dos Mater, Cuiaba, MT, Brasil, November. https://doi.org/10.2466/pr0.1981.48.1.335.   DOI
49 Chuah, S., Li, W., Chen, S.J., Sanjayan, J.G. and Duan, W.H. (2018), "Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments", Constr. Build. Mater., 161, 519-527. https://doi.org/10.1016/j.conbuildmat.2017.11.154.   DOI
50 Chu, H., Jiang, J., Sun, W. and Zhang, M. (2017), "Mechanical and thermal properties of graphene sulfonate nanosheet reinforced sacrificial concrete at elevated temperatures", Constr. Build. Mater., 153, 682-694. https://doi.org/10.1016/j.conbuildmat.2017.07.157.   DOI
51 Chung, S.Y., Han, T.S., Yun, T.S. and Youm, K.S. (2013), "Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging", Constr. Build. Mater., 48, 998-1008. https://doi.org/10.1016/j.conbuildmat.2013.07.082.   DOI
52 Puentes, J., Barluenga, G. and Palomar, I. (2014), "Effects of nano-components on early age cracking of self-compacting concretes", Constr. Build. Mater., 73, 89-96. https://doi.org/10.1016/j.conbuildmat.2014.09.061.   DOI
53 Verbiest, G.J., Oosterkamp, T.H. and Rost, M.J. (2017), "Subsurface contrast due to friction in heterodyne force microscopy", Nanotechnology, 28(8), 085704. https://doi.org/10.1088/1361-6528/aa53f2.   DOI
54 Wan, L., Pan, R. and Xu, J. (2019), "Mechanical properties and microstructure of CaSO4 Whisker reinforced cement mortar", J. Wuhan Univ. Technol. Sci. Ed., 34(5), 1170-1176. https://doi.org/10.1007/s11595-019-2174-z.   DOI
55 Wang, T., Ma, C., Hu, W., Chen, Y. and Chu, J. (2017), "Visualizing subsurface defects in graphite by acoustic atomic force microscopy", Microsc. Res. Tech., 80(1), 66-74. https://doi.org/10.1002/jemt.22668.   DOI
56 Sharma, U., Singh, L.P., Zhan, B. and Poon, C.S. (2019), "Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength", Cement Concrete Compos., 97, 312-321. https://doi.org/10.1016/j.cemconcomp.2019.01.007.   DOI
57 Li, X., Korayem, A.H., Li, C., Liu, Y., He, H., Sanjayan, J.G. and Duan, W.H. (2016), "Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength", Constr. Build. Mater., 123, 327-335. https://doi.org/10.1016/j.conbuildmat.2016.07.022.   DOI
58 Aly, M., Hashmi, M.S.J., Olabi, A.G., Messeiry, M., Abadir, E.F. and Hussain, A.I. (2012), "Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar", Mater. Des., 33, 127-135. https://doi.org/10.1016/j.matdes.2011.07.008.   DOI
59 Yamanaka, K., Noguchi, A., Tsuji, T., Koike, T. and Goto, T. (1999), "Quantitative material characterization by ultrasonic AFM", Surf. Interf. Anal., 27(5-6), 600-606. https://doi.org/10.1002/(SICI)1096-9918(199905/06)27:5/6<600::AID-SIA508>3.0.CO;2-W.   DOI
60 Ahn, P., Zhang, Z., Sun, C. and Balogun, O. (2013), "Ultrasonic near-field optical microscopy using a plasmonic nanofocusing probe", J. Appl. Phys., 113(23), 234903. https://doi.org/10.1063/1.4810925.   DOI
61 Amin, M.S., El-Gamal, S.M.A. and Hashem, F.S. (2015), "Fire resistance and mechanical properties of carbon nanotubes - clay bricks wastes (Homra) composites cement", Constr. Build. Mater., 98, 237-249. https://doi.org/10.1016/j.conbuildmat.2015.08.074.   DOI
62 Arefi, A., Saghravani, S.F. and Mozaffari Naeeni, R. (2016), "Mechanical behavior of concrete, made with micro-nano air bubbles", Civ. Eng. Infrastruct. J., 49(1), 139-147. https://doi.org/10.7508/ceij.2016.01.010.   DOI
63 Angeloni, L., Reggente, M., Passeri, D., Natali, M. and Rossi, M. (2018), "Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy", Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 10(6), e1521. https://doi.org/10.1002/wnan.1521.   DOI
64 Chalangaran, N., Farzampour, A. and Paslar, N. (2020), "Nano silica and metakaolin effects on the behavior of concrete containing rubber crumbs", CivilEng, 1(3), 264-274. https://doi.org/10.3390/civileng1030017.   DOI
65 Kim, H., Choi, Hyeonggil, Choi, Heesup, Lee, B., Lee, D. and Lee, D.E. (2020), "Study on physical properties of mortar for section restoration using calcium nitrite and CO2 nano-bubble water", Materials, 13(17), 3897. https://doi.org/10.3390/ma13173897.   DOI
66 Bentz, D.P., Garboczi, E.J., Haecker, C.J. and Jensen, O.M. (1999), "Effects of cement particle size distribution on performance properties of Portland cement-based materials", Cement Concrete Res., 29(10), 1663-1671. https://doi.org/10.1016/S0008-8846(99)00163-5.   DOI
67 Hurley, D.C., Kopycinska-Muller, M., Kos, A.B. and Geiss, R.H. (2005), "Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods", Meas. Sci. Technol., 16(11), 2167-2172. https://doi.org/10.1088/0957-0233/16/11/006.   DOI
68 Chung, S.Y., Elrahman, M.A., Stephan, D. and Kamm, P.H. (2016), "Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography", Constr. Build. Mater., 118, 204-215. https://doi.org/10.1016/j.conbuildmat.2016.04.159.   DOI
69 Chung, S.Y., Lehmann, C., Abd Elrahman, M. and Stephan, D. (2017), "Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches", Appl. Sci., 7(6), 550. https://doi.org/10.3390/app7060550.   DOI
70 Horszczaruk, E., Aleksandrzak, M., Cendrowski, K., Jedrzejewski, R., Baranowska, J. and Mijowska, E. (2020), "Mechanical properties cement based composites modified with nano-Fe3O4/SiO2", Constr. Build. Mater., 251, 118945. https://doi.org/10.1016/j.conbuildmat.2020.118945.   DOI
71 Hurley, D.C., Kopycinska-Muller, M., Langlois, E.D., Kos, A.B. and Barbosa, N. (2006), "Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy", Appl. Phys. Lett., 89(2), 021911. https://doi.org/10.1063/1.2221404.   DOI
72 Jindal, B.B. and Sharma, R. (2020), "The effect of nanomaterials on properties of geopolymers derived from industrial byproducts: A state-of-the-art review", Constr. Build. Mater., 252, 119028. https://doi.org/10.1016/j.conbuildmat.2020.119028.   DOI
73 Qian, Y. and De Schutter, G. (2018), "Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE)", Cement Concrete Res., 111, 15-22. https://doi.org/10.1016/j.cemconres.2018.06.013.   DOI
74 Qin, L., Gao, X., Su, A. and Li, Q. (2021), "Effect of carbonation curing on sulfate resistance of cement-coal gangue paste", J. Clean. Prod., 278, 123897. https://doi.org/10.1016/j.jclepro.2020.123897.   DOI
75 Nasrollahzadeh, M., Atarod, M., Sajjadi, M., Sajadi, S.M. and Issaabadi, Z. (2019), Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization and Applications, in Interface science and technology, Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00006-7.   DOI
76 Hirsekorn, S., Rabe, U. and W.Arnold (1996), "Near-field acoustic microscopy", Europhys. News, 27, 93-96.   DOI
77 Irshidat, M.R. and Al-Saleh, M.H. (2018), "Thermal performance and fire resistance of nanoclay modified cementitious materials", Constr. Build. Mater., 159, 213-219. https://doi.org/10.1016/j.conbuildmat.2017.10.127.   DOI
78 Jacobsen, C. and Kirz, J. (1998), "X-ray microscopy with synchrotron radiation", Nat. Struct. Biol., 5(8), 650-653. https://doi.org/10.1038/1341.   DOI
79 Jahng, J., Fishman, D.A., Park, S., Nowak, D.B., Morrison, W.A., Wickramasinghe, H.K. and Potma, E.O. (2015), "Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy", Acc. Chem. Res., 48(10), 2671-2679. https://doi.org/10.1021/acs.accounts.5b00327.   DOI
80 Jahng, J. (2015) "Photo-induced force microscopy and spectroscopy", Master Thesis, University of California Irvine, Irvine.
81 Nik, A.S. and Bahari, A. (2011), "Nano-particles in concrete and cement mixtures", Appl. Mech. Mater., 110-116, 3853-3855. https://doi.org/10.4028/www.scientific.net/AMM.110-116.3853.   DOI
82 Heenan, T.M.M., Finegan, D.P., Tjaden, B., Lu, X., Iacoviello, F., Millichamp, J., Brett, D.J.L., Shearing, P.R. (2018), "4D nanotomography of electrochemical energy devices using lab-based X-ray imaging", Nano Energy, 47, 556-565. https://doi.org/10.1016/j.nanoen.2018.03.001.   DOI
83 Bertocci, F., Grandoni, A. and Djuric-Rissner, T. (2019), "Scanning acoustic microscopy (SAM): A robust method for defect detection during the manufacturing process of ultrasound probes for medical imaging", 19(22), 4868. https://doi.org/10.3390/s19224868.   DOI
84 Paul, S.C., van Rooyen, A.S., van Zijl, G.P.A.G. and Petrik, L.F. (2018), "Properties of cement-based composites using nanoparticles: A comprehensive review", Constr. Build. Mater., 189, 1019-1034. https://doi.org/10.1016/j.conbuildmat.2018.09.062.   DOI
85 Mondal, P., Shah, S.P. and Marks, L. (2007), "A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials", Cement Concrete Res., 37(10), 1440-1444. https://doi.org/10.1016/j.cemconres.2007.07.001.   DOI
86 Norhasri, M.S.M., Hamidah, M.S. and Fadzil, A.M. (2017), "Applications of using nano material in concrete: A review", Constr. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.   DOI
87 Bisht, K., Siddique, S. and Ramana, P.V. (2019), "Employing atomic force microscopy technique and X-ray diffraction analysis to examine nanostructure and phase of glass concrete", Eur. J. Environ. Civ. Eng., 1-19. https://doi.org/10.1080/19648189.2019.1677506.   DOI
88 Bordelon, A.C. and Roesler, J.R. (2014), "Spatial distribution of synthetic fibers in concrete with X-ray computed tomography", Cement Concrete Compos., 53, 35-43. https://doi.org/10.1016/j.cemconcomp.2014.04.007.   DOI
89 Brisard, S., Serdar, M. and Monteiro, P.J.M. (2020), "Multiscale X-ray tomography of cementitious materials: A review", Cement Concrete Res., 128, 105824. https://doi.org/10.1016/j.cemconres.2019.105824.   DOI
90 Broughton, W.R. and Nunn, J. (2006), "Non-invasive methods for monitoring microstructural condition of materials", Report No. DEPC-MPE 032; National Physical Laboratory, U.K.
91 Ma, C., Chen, Y., Arnold, W. and Chu, J. (2017), "Detection of subsurface cavity structures using contact-resonance atomic force microscopy", J. Appl. Phys., 121(15), 154301. https://doi.org/10.1063/1.4981537.   DOI
92 Mu, R., Li, H., Qing, L., Lin, J. and Zhao, Q. (2017), "Aligning steel fibers in cement mortar using electro-magnetic field", Constr. Build. Mater., 131, 309-316. https://doi.org/10.1016/j.conbuildmat.2016.11.081.   DOI
93 Moon, J., Oh, J.E., Balonis, M., Glasser, F.P., Clark, S.M. and Monteiro, P.J.M. (2012), "High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO.Al2O3.CaCO3.11H2O", Cement Concrete Res., 42(1), 105-110. https://doi.org/10.1016/j.cemconres.2011.08.004.   DOI
94 Morsy, M.S., Alsayed, S.H. and Aqel, M. (2011), "Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar", Constr. Build. Mater., 25(1), 145-149. https://doi.org/10.1016/j.conbuildmat.2010.06.046.   DOI
95 Mourdikoudis, S., Pallares, R.M. and Thanh, N.T.K. (2018), "Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties", Nanoscale, 10(27), 12871-12934. https://doi.org/10.1039/C8NR02278J.   DOI
96 Nauman, S. (2021), "Piezoresistive sensing approaches for structural health monitoring of polymer composites-a review", Eng, 2(2), 197-226. https://doi.org/10.3390/eng2020013.   DOI
97 Nsengiyumva, W., Zhong, S., Lin, J., Zhang, Q., Zhong, J. and Huang, Y. (2021), "Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review", Compos. Struct. 256, 112951. https://doi.org/10.1016/j.compstruct.2020.112951.   DOI
98 Dong, W., Li, W., Luo, Z., Long, G., Vessalas, K. and Sheng, D. (2020), "Structural response monitoring of concrete beam under flexural loading using smart carbon black/cement-based sensors", Smart Mater. Struct., 29(6), 065001. https://doi.org/10.1088/1361-665X/ab7fef.   DOI
99 Lee, S.J., You, I., Zi, G. and Yoo, D.Y. (2017), "Experimental investigation of the piezoresistive properties of cement composites with hybrid carbon fibers and nanotubes", Sensors, 17(11), 2516. https://doi.org/10.3390/s17112516.   DOI
100 Dong, W., Li, W., Tao, Z. and Wang, K. (2019), "Piezoresistive properties of cement-based sensors: Review and perspective", Constr. Build. Mater., 203, 146-163. https://doi.org/10.1016/j.conbuildmat.2019.01.081.   DOI
101 Fibikar, S., Rinke, M.T., Schafer, A. and Cola, L. De (2010), "Quantification of cation-exchanged zeolites by XPS and EDS: A comparative study", Micropor. Mesopor. Mater., 132(1-2), 296-299. https://doi.org/10.1016/j.micromeso.2010.02.016.   DOI
102 Dong, W., Li, W., Wang, K., Luo, Z. and Sheng, D. (2020), "Self-sensing capabilities of cement-based sensor with layer-distributed conductive rubber fibres", Sensor Actuat. A Phys., 301, 111763. https://doi.org/10.1016/j.sna.2019.111763.   DOI
103 McGuigan, A.P., Huey, B.D., Briggs, G.A.D., Kolosov, O.V., Tsukahara, Y. and Yanaka, M. (2002), "Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy", Appl. Phys. Lett., 80(7), 1180-1182. https://doi.org/10.1063/1.1450058.   DOI
104 Sobolev, K., Flores, I., Hermosillo, R. and Torres-Martinez, L.M. (2008), "Nanomaterials and nanotechnology for high-performance cement composites", Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, Denver, U.S.A., November. https://doi.org/10.14359/20213.   DOI
105 Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 055010. https://doi.org/10.1088/0964-1726/18/5/055010.   DOI
106 Zhang, C., Yu, X., Alexander, L., Zhang, Y., Rajamani, R. and Garg, N. (2016), "Piezoelectric active sensing system for crack detection in concrete structure", J. Civ. Struct. Heal. Monit. 6(1), 129-139. https://doi.org/10.1007/s13349-015-0143-6.   DOI
107 Mahdikhani, M., Bamshad, O. and Fallah Shirvani, M. (2018), "Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition", Constr. Build. Mater. 167, 929-935. https://doi.org/10.1016/j.conbuildmat.2018.01.137.   DOI
108 Marrese, M., Guarino, V. and Ambrosio, L. (2017), "Atomic force microscopy: A powerful tool to address scaffold design in tissue engineering", J. Funct. Biomater., 8(1), 7. https://doi.org/10.3390/jfb8010007.   DOI
109 Mendoza, O., Sierra, G. and Tobon, J.I. (2013), "Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications", Constr. Build. Mater., 47, 771-778. https://doi.org/10.1016/j.conbuildmat.2013.05.100.   DOI
110 Mendoza, O., Sierra, G. and Tobon, J.I. (2014), "Effect of the reagglomeration process of multi-walled carbon nanotubes dispersions on the early activity of nanosilica in cement composites", Constr. Build. Mater., 54, 550-557. https://doi.org/10.1016/j.conbuildmat.2013.12.084.   DOI
111 Meng, Y., Liao, B., Pang, H., Zhang, J. and Song, L. (2019), "Cyclodextrin-modified polycarboxylate superplasticizers as dispersant agents for multiwalled carbon nanotubes", J. Appl. Polym. Sci., 136(16), 47311. https://doi.org/10.1002/app.47311.   DOI
112 Senff, L., Labrincha, J.A., Ferreira, V.M., Hotza, D. and Repette, W.L. (2009), "Effect of nano-silica on rheology and fresh properties of cement pastes and mortars", Constr. Build. Mater., 23(7), 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005.   DOI
113 Oertel, T., Helbig, U., Hutter, F., Kletti, H. and Sextl, G. (2014), "Influence of amorphous silica on the hydration in ultra-high performance concrete", Cement Concrete Res., 58, 121-130. https://doi.org/10.1016/j.cemconres.2014.01.006.   DOI
114 Salemi, N. and Behfarnia, K. (2013), "Effect of nano-particles on durability of fiber-reinforced concrete pavement", Constr. Build. Mater., 48, 934-941. https://doi.org/10.1016/j.conbuildmat.2013.07.037.   DOI
115 Sanchez, F. and Ince, C. (2009), "Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites", Compos. Sci. Technol., 69(7-8), 1310-1318. https://doi.org/10.1016/j.compscitech.2009.03.006.   DOI
116 Shaikh, F.U.A. and Supit, S.W.M. (2015), "Chloride induced corrosion durability of high volume fly ash concretes containing nano particles", Constr. Build. Mater., 99, 208-225. https://doi.org/10.1016/j.conbuildmat.2015.09.030.   DOI
117 Shekhawat, G.S. (2005), "Nanoscale imaging of buried structures via scanning near-field ultrasound holography", Science, 310(5745), 89-92. https://doi.org/10.1126/science.1117694.   DOI
118 Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concr. Constr., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367.   DOI
119 Li, Y., Li, H., Wang, Z. and Jin, C. (2020), "Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel", Cement Concrete Res., 128, 105955. https://doi.org/10.1016/j.cemconres.2019.105955.   DOI
120 Lu, Z., Li, X., Hanif, A., Chen, B., Parthasarathy, P., Yu, J. and Li, Z. (2017), "Early-age interaction mechanism between the graphene oxide and cement hydrates", Constr. Build. Mater., 152, 232-239. https://doi.org/10.1016/j.conbuildmat.2017.06.176.   DOI
121 Eldessouki, M. and Abdelkader, M. (2019), "Computed tomography for fibrous materials, recent trends in fibrous material science", Technical University of Liberec, Liberec, Czech Republic.
122 Zhang, R., Cheng, X., Hou, P. and Ye, Z. (2015), "Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage", Constr. Build. Mater., 81, 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003.   DOI
123 Dong, Y., Su, C., Qiao, P. and Sun, L. (2018), "Microstructural damage evolution and its effect on fracture behavior of concrete subjected to freeze-thaw cycles", Int. J. Damage Mech., 27(8), 1272-1288. https://doi.org/10.1177/1056789518787025.   DOI
124 Dong, Y.C., Hajfathalian, M., Maidment, P.S.N., Hsu, J.C., Naha, P.C., Si-Mohamed, S., Breuilly, M., Kim, J., Chhour, P., Douek, P., Litt, H.I and Cormode, D.P. (2019), "Effect of gold nanoparticle size on their properties as contrast agents for computed tomography", Sci. Rep., 9(1), 14912. https://doi.org/10.1038/s41598-019-50332-8.   DOI
125 Dewar, J. (2003), "Concrete mix design", Adv. Concr. Technol., 3-40. https://doi.org/10.1016/B978-075065686-3/50287-1.   DOI
126 Dong, W., Li, W., Lu, N., Qu, F., Vessalas, K. and Sheng, D. (2019), "Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content", Compos. Part B Eng., 178, 107488. https://doi.org/10.1016/j.compositesb.2019.107488.   DOI
127 Yip, K., Cui, T., Sun, Y. and Filleter, T. (2019), "Investigating the detection limit of subsurface holes under graphite with atomic force acoustic microscopy", Nanoscale, 11(22), 10961-10967. https://doi.org/10.1039/C9NR03730F.   DOI
128 Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount", Constr. Build. Mater., 65, 140-150. https://doi.org/10.1016/j.conbuildmat.2014.04.063.   DOI
129 Zhang, L., Ding, S., Han, B., Yu, X. and Ni, Y.Q. (2019), "Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/nanocarbon black composite filler", Compos. Part A Appl. Sci. Manuf., 119, 8-20. https://doi.org/10.1016/j.compositesa.2019.01.010.   DOI
130 Zhang, Z., Wang, H., Provis, J.L., Bullen, F., Reid, A. and Zhu, Y. (2012), "Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide", Thermochim. Acta, 539, 23-33. https://doi.org/10.1016/j.tca.2012.03.021.   DOI
131 Zhang, Z., Provis, J.L., Wang, H., Bullen, F. and Reid, A. (2013), "Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin", Thermochim. Acta, 565, 163-171. https://doi.org/10.1016/j.tca.2013.01.040.   DOI
132 Cosoli, G., Mobili, A., Tittarelli, F., Revel, G.M. and Chiariotti, P. (2020), "Electrical resistivity and electrical impedance measurement in mortar and concrete elements: A systematic review", Appl. Sci. 10(24), 9152. https://doi.org/10.3390/app10249152.   DOI
133 Zeng, X., Lan, X., Zhu, H., Liu, H., Umar, H.A., Xie, Y., Long, G. and Ma, C. (2020), "A review on bubble stability in fresh concrete: mechanisms and main factors", Materials, 13(8), 1820. https://doi.org/10.3390/ma13081820.   DOI
134 Jin, H., Lu, W.Y., Cordill, M.J. and Schmidegg, K. (2011), "In situ Study of Cracking and Buckling of Chromium Films on PET Substrates", Exp. Mech., 51(2), 219-227. https://doi.org/10.1007/s11340-010-9359-x.   DOI
135 Shekhawat, G.S., Srivastava, A.K., Dravid, V.P. and Balogun, O. (2017), "Thickness resonance acoustic microscopy for nanomechanical subsurface imaging", ACS Nano, 11(6), 6139-6145. https://doi.org/10.1021/acsnano.7b02170.   DOI
136 Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials - A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052.   DOI
137 Eva, Z., Kamila, H., Tereza, K., Patrik, S., Jiri, S. and Ondrej, A. (2020), "Ndt methods suitable for evaluation the condition of military fortification construction in the field", Appl. Sci. 10(22), 8161. https://doi.org/10.3390/app10228161.   DOI
138 Fan, Y., Zhang, S., Wang, Q. and Shah, S.P. (2016), "The effects of nano-calcined kaolinite clay on cement mortar exposed to acid deposits", Constr. Build. Mater., 102, 486-495. https://doi.org/10.1016/j.conbuildmat.2015.11.016.   DOI
139 Farzampour, A. (2020), Compressive Behavior of Concrete under Environmental Effects, in Compressive Strength of Concrete. IntechOpen, London, U.K.
140 Collins, F., Lambert, J. and Duan, W.H. (2012), "The influences of admixtures on the dispersion, workability and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(2), 201-207. https://doi.org/10.1016/j.cemconcomp.2011.09.013.   DOI
141 Darma, I.S., Sugiyama, T. and Promentilla, M.A.B. (2013), "Application of X-Ray CT to study diffusivity in cracked concrete through the observation of tracer transport", J. Adv. Concr. Technol., 11(10), 266-281. https://doi.org/10.3151/jact.11.266.   DOI
142 Meng, W. and Khayat, K.H. (2018), "Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties and microstructure of UHPC", Cement Concrete Res., 105, 64-71. https://doi.org/10.1016/j.cemconres.2018.01.001.   DOI
143 Fu, D., Park, K., Delen, G., Attila, O ., Meirer, F., Nowak, D., Park, S., Schmidt, J.E. and Weckhuysen, B.M. (2017), "Nanoscale infrared imaging of zeolites using photoinduced force microscopy", Chem. Commun., 53(97), 13012-13014. https://doi.org/10.1039/C7CC06832H.   DOI
144 Gesoglu, M., Guneyisi, E., Asaad, D.S. and Muhyaddin, G.F. (2016), "Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica", Constr. Build. Mater., 102, 706-713. https://doi.org/10.1016/j.conbuildmat.2015.11.020.   DOI
145 Ghafari, E., Costa, H., Julio, E., Portugal, A. and Duraes, L. (2014), "The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete", Mater. Des., 59, 1-9. https://doi.org/10.1016/j.matdes.2014.02.051.   DOI
146 Naeimi, M., Li, Z., Qian, Z., Zhou, Y., Wu, J., Petrov, R.H., Sietsma, J. and Dollevoet, R. (2017), "Reconstruction of the rolling contact fatigue cracks in rails using X-ray computed tomography", NDT E Int., 92, 199-212. https://doi.org/10.1016/j.ndteint.2017.09.004.   DOI
147 Ortega, E., Rodriguez-Martinez, O., Figueroa-Labastida, M., Villa-Pulido, A.A., Sanchez-Fernandez, A., Cue-Sampedro, R., Gracia-Pinilla, M.A., and Menchaca, J.L. (2016), "Long-term influence of chitin concentration on the resistance of cement pastes determined by atomic force microscopy", Phys. Status Solidi A, 213(12), 3110-3116. https://doi.org/10.1002/pssa.201600105.   DOI
148 Stahli, P., Custer, R. and van Mier, J.G.M. (2008), "On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC", Mater. Struct., 41(1), 189-196. https://doi.org/10.1617/s11527-007-9229-x.   DOI
149 Kim, K.Y., Yun, T.S., Choo, J., Kang, D.H. and Shin, H.S. (2012), "Determination of air-void parameters of hardened cement-based materials using X-ray computed tomography", Constr. Build. Mater., 37, 93-101. https://doi.org/10.1016/j.conbuildmat.2012.07.012.   DOI
150 Kimura, K., Kobayashi, K., Matsushige, K. and Yamada, H. (2013), "Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques", Ultramicroscopy, 133, 41-49. https://doi.org/10.1016/j.ultramic.2013.04.003.   DOI
151 Peled, A., Castro, J. and Weiss, W.J. (2013), "Atomic force and lateral force microscopy (AFM and LFM) examinations of cement and cement hydration products", Cement Concrete Compos., 36, 48-55. https://doi.org/10.1016/j.cemconcomp.2012.08.021.   DOI
152 Zhou, B. and Uchida, Y. (2017), "Relationship between fiber orientation/distribution and post-cracking behaviour in ultra-high-performance fiber-reinforced concrete (UHPFRC)", Cement Concrete Compos., 83, 66-75. https://doi.org/10.1016/j.cemconcomp.2017.07.007.   DOI
153 Cuberes, M.T. (2008), Mechanical Diode-Based Ultrasonic Atomic Force Microscopies, in Applied Scanning Probe Methods XI, Springer, Berlin, Germany, 39-71. https://doi.org/10.1007/978-3-540-85037-3_3.   DOI
154 Abbas, R. (2009), "Influence of nano-silica addition on properties of conventional and ultra-high performance concretes", Hous. Build. Natl. Res. Cent. J., 5(1), 18-30.
155 Qsymah, A., Sharma, R., Yang, Z., Margetts, L. and Mummery, P. (2017), "Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete", Constr. Build. Mater., 130, 230-240. https://doi.org/10.1016/j.conbuildmat.2016.09.020.   DOI
156 Raju, R.A., Lim, S., Kageyama, T. and Akiyama, M. (2019), "Visualization of the fibre dispersion in the steel fibre reinforced concrete using X-ray image", Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, Krakow, Poland, May.
157 Reches, Y. (2018), "Nanoparticles as concrete additives: Review and perspectives", Constr. Build. Mater., 175, 483-495. https://doi.org/10.1016/j.conbuildmat.2018.04.214.   DOI
158 AFM(2020), AFM: Exploring Tapping Mode and AM-FM; Oxford instruments, Oxford, U.K. https://afm.oxinst.com/outreach/tapping-mode-for-afm-am-fm.
159 Du, S., Wu, J., AlShareedah, O. and Shi, X. (2019), "Nanotechnology in cement-based materials: A review of durability, modeling and advanced characterization", 9(9), 1213. https://doi.org/10.3390/nano9091213.   DOI
160 Stan, G. and Solares, S.D. (2014), "Frequency, amplitude and phase measurements in contact resonance atomic force microscopies", Beilstein J. Nanotechnol., 5, 278-288. https://doi.org/10.3762/bjnano.5.30.   DOI
161 Eaton, P., Quaresma, P., Soares, C., Neves, C., de Almeida, M.P., Pereira, E. and West, P. (2017), "A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles", Ultramicroscopy, 182, 179-190. https://doi.org/10.1016/j.ultramic.2017.07.001.   DOI
162 Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y. and Shah, S.P. (2012), "Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials", Constr. Build. Mater., 37, 707-715. https://doi.org/10.1016/j.conbuildmat.2012.08.006.   DOI
163 Korayem, A.H., Tourani, N., Zakertabrizi, M., Sabziparvar, A.M. and Duan, W.H. (2017), "A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective", Constr. Build. Mater., 153, 346-357. https://doi.org/10.1016/j.conbuildmat.2017.06.164.   DOI
164 Dufrene, Y.F. ando, T., Garcia, R., Alsteens, D., Martinez-Martin, D., Engel, A., Gerber, C., Muller, D.J. (2017), "Imaging modes of atomic force microscopy for application in molecular and cell biology", Nat. Nanotechnol., 12(4), 295-307. https://doi.org/10.1038/nnano.2017.45.   DOI
165 El-Gamal, S.M.A., Abo-El-Enein, S.A., El-Hosiny, F.I., Amin, M.S. and Ramadan, M. (2018), "Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles", J. Therm. Anal. Calorim., 131(2), 949-968. https://doi.org/10.1007/s10973-017-6629-1.   DOI
166 Philip, M.A., Natarajan, U. and Nagarajan, R. (2014), "Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites", Adv. Nano Res., 2(2), 121-133. https://doi.org/10.12989/anr.2014.2.2.121.   DOI
167 Ahmed, H., Bogas, J.A., Guedes, M. and Pereira, M.F.C. (2019), "Dispersion and reinforcement efficiency of carbon nanotubes in cementitious composites", Mag. Concr. Res., 71(8), 408-423. https://doi.org/10.1680/jmacr.17.00562.   DOI
168 Parveen, S., Rana, S. and Fangueiro, R. (2013), "A review on nanomaterial dispersion, microstructure and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites", J. Nanomater., 2013, 1-19. https://doi.org/10.1155/2013/710175.   DOI
169 Perez-Nicolas, M., Plank, J., Ruiz-Izuriaga, D., Navarro-Blasco, I., Fernandez, J.M. and Alvarez, J.I. (2018), "Photocatalytically active coatings for cement and air lime mortars: Enhancement of the activity by incorporation of superplasticizers", Constr. Build. Mater., 162, 628-648. https://doi.org/10.1016/j.conbuildmat.2017.12.087.   DOI
170 Piras, D., Neer, P., Es, M. and Marnani, H. (2020), "Methods of and system for performing subsurface imaging using vibration sensing", U.S. Patent Application, No. 16/477,479.
171 Powers, T.C. (1954), "Void space as a basis for producing airentrained concrete", ACI J. Proc., 50(5). https://doi.org/10.14359/11792.   DOI
172 Provis, J.L., Rose, V., Bernal, S.A. and van Deventer, J.S.J. (2009), "High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash", 25(19), 11897-11904. https://doi.org/10.1021/la901560h.   DOI
173 Provis, J.L., Rose, V., Winarski, R.P. and van Deventer, J.S.J. (2011), "Hard X-ray nanotomography of amorphous aluminosilicate cements", Scr. Mater., 65(4), 316-319. https://doi.org/10.1016/j.scriptamat.2011.04.036.   DOI
174 Tsuji, T. and Yamanaka, K. (2001), "Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite", Nanotechnology, 12(3), 301-307. https://doi.org/10.1088/0957-4484/12/3/318.   DOI
175 Sikora, P., Abd Elrahman, M., Chung, S.Y., Cendrowski, K., Mijowska, E. and Stephan, D. (2019), "Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature", Cement Concrete Compos., 95, 193-204. https://doi.org/10.1016/j.cemconcomp.2018.11.006.   DOI
176 Sophocleous, M. (2017), "Electrical Resistivity Sensing Methods and Implications", Electr. Resist. Conduct., 10, 67748. https://doi.org/10.5772/67748.   DOI
177 Stan, G., King, S.W. and Cook, R.F. (2012), "Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy", Nanotechnology, 23(21), 215703. https://doi.org/10.1088/0957-4484/23/21/215703.   DOI
178 Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Perez, R., Morita, S. and Custance, O. (2007), "Chemical identification of individual surface atoms by atomic force microscopy", Nature, 446(7131), 64-67. https://doi.org/10.1038/nature05530.   DOI
179 Takeichi, Y. (2018), Scanning Transmission X-ray Microscopy in Compendium of Surface and Interface Analysis, Springer, Singapore. https://doi.org/10.1007/978-981-10-6156-1_96.   DOI
180 Chung, S.Y., Han, T.S. and Kim, S.Y. (2015), "Reconstruction and evaluation of the air permeability of a cement paste specimen with a void distribution gradient using CT images and numerical methods", Constr. Build. Mater., 87, 45-53. https://doi.org/10.1016/j.conbuildmat.2015.03.103.   DOI
181 Reggente, M., Passeri, D., Angeloni, L., Scaramuzzo, F.A., Barteri, M., De Angelis, F., Persiconi, I., de Stefanog, M.E. and Rossi, M. (2017), "Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging", Nanoscale, 9(17), 5671-5676. https://doi.org/10.1039/C7NR01111C.   DOI
182 Ren, W., Yang, Z., Sharma, R., Zhang, C. and Withers, P.J. (2015), "Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete", Eng. Fract. Mech., 133, 24-39. https://doi.org/10.1016/j.engfracmech.2014.10.016.   DOI
183 Saez de Ibarra, Y., Gaitero, J.J., Erkizia, E. and Campillo, I. (2006), "Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions", Phys. status solidi, 203(6), 1076-1081. https://doi.org/10.1002/pssa.200566166.   DOI
184 Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete - A review", Constr. Build. Mater., 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014.   DOI
185 Siddique, R. and Mehta, A. (2014), "Effect of carbon nanotubes on properties of cement mortars", Constr. Build. Mater., 50, 116-129. https://doi.org/10.1016/j.conbuildmat.2013.09.019.   DOI
186 Ahmed, H., Lee, Y.J. and Lee, J.R. (2020), "Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens", Smart Struct. Syst. 26(5), 657-666. https://doi.org/10.12989/sss.2020.26.5.657.   DOI
187 Wang, W.C. (2017), "Compressive strength and thermal conductivity of concrete with nanoclay under various hightemperatures", Constr. Build. Mater., 147, 305-311. https://doi.org/10.1016/j.conbuildmat.2017.04.141.   DOI
188 Kim, J.H., Balogun, O. and Shah, S.P. (2010), "Atomic force acoustic microscopy to measure nanoscale mechanical properties of cement pastes", Transp. Res. Rec., 2141(1), 102-108. https://doi.org/10.3141/2141-17.   DOI
189 Ahmed, S., Schumacher, T., Thostenson, E.T. and McConnell, J. (2020), "Performance evaluation of a carbon nanotube sensor for fatigue crack monitoring of metal structures", Sensors, 20(16), 4383. https://doi.org/10.3390/s20164383.   DOI
190 Said, A.M., Zeidan, M.S., Bassuoni, M.T. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044.   DOI
191 Wargo, E.A., Kotaka, T., Tabuchi, Y. and Kumbur, E.C. (2013), "Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials", J. Power Sources, 241, 608-618. https://doi.org/10.1016/j.jpowsour.2013.04.153.   DOI
192 Wu, H., Pan, J. and Wang, J. (2020), "Nano-scale structure and mechanical properties of ASR products under saturated and dry conditions", Sci. Rep., 10(1), 9187. https://doi.org/10.1038/s41598-020-66262-9.   DOI
193 Wu, Z., Khayat, K.H. and Shi, C. (2017), "Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete", Cement Concrete Res., 95, 247-256. https://doi.org/10.1016/j.cemconres.2017.02.031.   DOI
194 Xavier, M.S., Yang, S., Comte, C., Bab-Hadiashar, A., Wilson, N. and Cole, I. (2020), "Nondestructive quantitative characterisation of material phases in metal additive manufacturing using multi-energy synchrotron X-rays microtomography", Int. J. Adv. Manuf. Technol., 106(5-6), 1601-1615. https://doi.org/10.1007/s00170-019-04597-y.   DOI
195 Villa, C., Frohlich, B. and Lynnerup, N. (2019), The Role of Imaging in Paleopathology, in Ortner's Identification of Pathological Conditions in Human Skeletal Remains, Academic Press, Cambridge, U.S.A. https://doi.org/10.1016/B978-0-12-809738-0.00007-7.   DOI
196 Lavergne, F., Belhadi, R., Carriat, J. and Ben Fraj, A. (2019), "Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste", Cement Concrete Compos., 95, 42-55. https://doi.org/10.1016/j.cemconcomp.2018.10.007.   DOI
197 Feng, P., Chang, H., Liu, X., Ye, S., Shu, X. and Ran, Q. (2020), "The significance of dispersion of nano-SiO2 on early age hydration of cement pastes", Mater. Des., 186, 108320. https://doi.org/10.1016/j.matdes.2019.108320.   DOI
198 Ferrari, L., Kaufmann, J., Winnefeld, F. and Plank, J. (2010), "Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential and adsorption measurements", J. Colloid Interf. Sci., 347(1), 15-24. https://doi.org/10.1016/j.jcis.2010.03.005.   DOI
199 Tobon, J.I., Paya, J. and Restrepo, O.J. (2015), "Study of durability of Portland cement mortars blended with silica nanoparticles", Constr. Build. Mater., 80, 92-97. https://doi.org/10.1016/j.conbuildmat.2014.12.074.   DOI
200 Aryan, P., Sampath, S. and Sohn, H. (2018), "An overview of nondestructive testing methods for integrated circuit packaging inspection", 18(7), 1981. https://doi.org/10.3390/s18071981.   DOI
201 Jing, H. and Yu, W. (2017), "Microstructure of cotton fibrous assemblies based on computed tomography", Proceeding of the IOP Conference Series: Materials Science and Engineering, 274(1), 012059. https://doi.org/10.1088/1757-899X/274/1/012059.   DOI
202 Balzar, D. (1993), "X-ray diffraction line broadening: Modeling and applications to high-Tc superconductors", J. Res. Natl. Inst. Stand. Technol., 98(3), 321. https://doi.org/10.6028/jres.098.026.   DOI
203 Vitry, P. (2016), "Applications and development of acoustic and microwave atomic force microscopy for high resolution tomography analysis", Report No.tel-01635664; Universite de Bourgogne Franche-Comte.
204 Wang, L., Jakob, D.S., Wang, H., Apostolos, A., Pires, M.M. and Xu, X.G. (2019), "Generalized heterodyne configurations for photoinduced force microscopy", Anal. Chem., 91(20), 13251-13259. https://doi.org/10.1021/acs.analchem.9b03712.   DOI
205 Jung, M., Hong, S. and Moon, J. (2020), "Ozone treatment on the dispersion of carbon nanotubes in ultra-high performance concrete", Mater. Des., 193, 108813. https://doi.org/10.1016/j.matdes.2020.108813.   DOI
206 Kalyan Phani, M., Kumar, A., Arnold, W. and Samwer, K. (2016), "Elastic stiffness and damping measurements in titanium alloys using atomic force acoustic microscopy", J. Alloys Compd., 676, 397-406. https://doi.org/10.1016/j.jallcom.2016.03.155.   DOI
207 Bai, S., Jiang, L., Xu, N., Jin, M. and Jiang, S. (2018), "Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume", Constr. Build. Mater., 164, 433-441. https://doi.org/10.1016/j.conbuildmat.2017.12.176.   DOI
208 Behfarnia, K. and Salemi, N. (2013), "The effects of nano-silica and nano-alumina on frost resistance of normal concrete", Constr. Build. Mater., 48, 580-584. https://doi.org/10.1016/j.conbuildmat.2013.07.088.   DOI
209 Bossa, N., Chaurand, P., Vicente, J., Borschneck, D., Levard, C., Aguerre-Chariol, O. and Rose, J. (2015), "Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste", Cement Concrete Res., 67, 138-147. https://doi.org/10.1016/j.cemconres.2014.08.007.   DOI
210 Abd Elrahman, M., El Madawy, M.E., Chung, S.Y., Majer, S., Youssf, O. and Sikora, P. (2020), "An investigation of the mechanical and physical characteristics of cement paste incorporating different air entraining agents using X-ray micro-computed tomography", Crystals, 10(1), 23. https://doi.org/10.3390/cryst10010023.   DOI
211 Rana, S., Subramani, P., Fangueiro, R. and Correia, A.G. (2016), "A review on smart self-sensing composite materials for civil engineering applications", AIMS Mater. Sci. 3(2), 357-379. https://doi.org/10.3934/matersci.2016.2.357.   DOI