Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.5.521

Metal-organic framework films functionalized with nonionic conjugated polythiophenes for visual detection of PAHs  

Tawfik, Salah M. (Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI) Nasr City)
Lee, Yong-Ill (Department of Materials Convergence and System Engineering, Changwon National University)
Publication Information
Advances in nano research / v.11, no.5, 2021 , pp. 521-536 More about this Journal
Abstract
Natural and anthropogenic activities lead to the generation of polycyclic aromatic hydrocarbons (PAHs), persistent contaminants that adversely affect the environment and public health. However, highly sensitive, fast, and portable techniques for the detection of PAHs remain a technological challenge. The rapid analysis of urinary levels of 1-hydroxypyrene (1-HP) would enable PAH carcinogens to be measured using biomonitoring techniques. Here, we demonstrate biocompatible, easy-to-use, and portable sensors based on novel π-conjugated metal-organic frameworks (MOFs) for the detection of 1-HP. These sensors were developed by incorporating nonionic conjugated polythiophenes with a PLQY as high as 65% into lanthanide-MOFs (CP1-Eu-MOF and CP2-Eu-MOF) using an in-situ synthesis strategy. The emission of the sensors can be effectively quenched by 1-HP via hydrophobic, π-π stacking, and hydrogen bonding interactions. Significantly, the unique structure of CP2-Eu-MOF sensor displays superior performance with enhanced sensitivity (LOD ~1.02 pM) that is 1.63 times higher than that of CP1-Eu-MOF (LOD ~1.66 pM). More importantly, we successfully demonstrated the possibility of employing wax-printed paper in combination with a fast and cost-effective smartphone for rapid 1-HP detection. Moreover, portable sensory films were fabricated by incorporating CP2-Eu-MOF into a poly(vinylidene difluoride) (PVDF) matrix to produce CP2-Eu-MOF/PVDF films for the visual detection of 1-HP levels as low as 25 pM. Finally, the feasibility of successfully analyzing the levels of 1-HP in urine was verified by testing real urine samples with satisfactory recoveries of 94.1-103.5%. This method provides new pathways for the biomonitoring of polyaromatic environmental pollutants.
Keywords
conjugated polymers; fluorescent film; metal-organic framework nanostructures; PAHs sensor; Paper-smartphone devices; polycyclic aromatic hydrocarbons;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Omidi, F., Khadem, M., Dehghani, F., Seyedsomeah, M. and Shahtaheri, S.J. (2020), "Ultrasound-assisted dispersive microsolid-phase extraction based on N-doped mesoporous carbon and high-performance liquid chromatographic determination of 1-hydroxypyrene in urine samples", J. Sep. Sci., 43(13), 2602-2609. https://doi.org/10.1002/jssc.202000172.   DOI
2 Song, X.Z., Song, S.Y., Zhao, S.N., Hao, Z.M., Zhu, M., Meng, X., Wu, L.L. and Zhang, H.J.J.A.F.M. (2014), "Single-Crystal-to-Single-Crystal transformation of a europium (III) metal-organic framework producing a multi-responsive luminescent sensor", Adv. Funct. Mater., 24(26), 4034-4041. https://doi.org/10.1002/adfm.201303986.   DOI
3 Soury, S., Bahrami, A., Alizadeh, S., Ghorbani Shahna, F. and Nematollahi, D. (2019), "Development of a needle trap device packed with zinc based metal-organic framework sorbent for the sampling and analysis of polycyclic aromatic hydrocarbons in the air", Microchem. J., 148, 346-354. https://doi.org/10.1016/j.microc.2019.05.019.   DOI
4 Tawfik, S.M., Sharipov, M., Kakhkhorov, S., Elmasry, M.R. and Lee, Y.I. (2019), "Multiple emitting amphiphilic conjugated polythiophenes-coated CdTe QDs for picogram detection of trinitrophenol explosive and application using chitosan film and paper-based sensor coupled with smartphone", Adv. Sci., 6(2), 1801467. https://doi.org/10.1002/advs.201801467.   DOI
5 Wang, Y., Wong, L.Y., Meng, L., Pittman, E.N., Trinidad, D.A., Hubbard, K.L., Etheredge, A., Del Valle-Pinero, A.Y., Zamoiski, R., van Bemmel, D.M., Borek, N., Patel, V., Kimmel, H.L., Conway, K.P., Lawrence, C., Edwards, K.C., Hyland, A., Goniewicz, M.L., Hatsukami, D., Hecht, S.S. and Calafat, A.M. (2019), "Urinary concentrations of monohydroxylated polycyclic aromatic hydrocarbons in adults from the U.S. Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013-2014)", Environ. Int., 123, 201-208. https://doi.org/10.1016/j.envint.2018.11.068.   DOI
6 Zeng, X., Hu, J., Zhang, M., Wang, F., Wu, L. and Hou, X. (2020), "Visual detection of fluoride anions using mixed lanthanide metal-organic frameworks with a smartphone", Anal. Chem., 92(2), 2097-2102. https://doi.org/10.1021/acs.analchem.9b04598.   DOI
7 Xu, X.Y. and Yan, B.J.A.F.M. (2017b), "Intelligent molecular searcher from logic computing network based on Eu (III) functionalized UMOFs for environmental monitoring", Adv. Funct. Mater. 27(23), 1700247. https://doi.org/10.1002/adfm.201700247.   DOI
8 Xue, J.H., Xiao, K.P., Wang, Y.S., Liu, L., Li, J.Q., Li, M., Qu, Y.N. and Xiao, X.L. (2020), "Aggregation-induced photoluminescence enhancement of protamine-templated gold nanoclusters for 1-hydroxypyrene detection using 9- hydroxyphenanthrene as a sensitizer", Colloid Surf. B, 189, 110873. https://doi.org/10.1016/j.colsurfb.2020.110873.   DOI
9 Zhang, Z.X., Zhu, Y.X. and Zhang, Y.J.T. (2015), "Simultaneous determination of 9-ethylphenanthrene, pyrene and 1-hydroxypyrene in an aqueous solution by synchronous fluorimetry using the double scans method and hydroxyl-propyl beta-cyclodextrin as a sensitizer", Talanta, 144, 836-843. https://doi.org/10.1016/j.talanta.2015.05.067.   DOI
10 Zhang, F., Yao, H., Chu, T., Zhang, G., Wang, Y. and Yang, Y.J.C.A.E.J. (2017a), "A lanthanide MOF thin-film fixed with Co3O4 nano-anchors as a highly efficient luminescent sensor for nitrofuran antibiotics", Chem. Eur. J., 23(43), 10293-10300. https://doi.org/10.1002/chem.201701852.   DOI
11 Bansal, V. and Kim, K.H.J.E.I. (2015), "Review of PAH contamination in food products and their health hazards", Environ. Int., 84, 26-38. https://doi.org/10.1016/j.envint.2015.06.016.   DOI
12 Ou, Q., Tawfik, S.M., Zhang, X. and Lee, Y.I. (2020), "Novel "turn on-off" paper sensor based on nonionic conjugated polythiophene-coated CdTe QDs for efficient visual detection of cholinesterase activity", Analyst, 145(12), 4305-4313. https://doi.org/10.1039/D0AN00924E   DOI
13 Serrano, M., Bartolome, M., Gallego-Pico, A., Garcinuno, R., Bravo, J. and Fernandez, P.J.T. (2015), "Synthesis of a molecularly imprinted polymer for the isolation of 1-hydroxypyrene in human urine", Talanta, 143 71-76. https://doi.org/10.1016/j.talanta.2015.04.092.   DOI
14 Lin, R.B., Liu, S.Y., Ye, J.W., Li, X.Y. and Zhang, J.P.J.A.S. (2016), "Photoluminescent metal-organic frameworks for gas sensing", Adv. Sci., 3(7), 1500434. https://doi.org/10.1002/advs.201500434.   DOI
15 Shim, J., Tawfik, S.M., Thangadurai, D.T. and Lee, Y.-I. (2021), "Amphiphilic conjugated polythiophene-based fluorescence "Turn on" sensor for selective detection of Escherichia coli in water and milk", Bull. Korean Chem. Soc., 42(7), 1047-1053. https://doi.org/10.1002/bkcs.12333.   DOI
16 Sun, C.Z., Zhang, L.Y., Wang, J.Y., Chen, Z.N. and Dai, F.R. (2018), "Sensitive and selective urinary 1-hydroxypyrene detection by dinuclear terbium-sulfonylcalixarene complex", Dalton Transact., 47(25), 8301-8306. https://doi.org/10.1039/C8DT01604F.   DOI
17 Abdel-Shafy, H.I. and Mansour, M.S.M. (2016), "A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation", Egyptian J. Petrol., 25(1), 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011.   DOI
18 Ankamwar, B. and Sur, U.K.J. (2020), "Copper micro/nanostructures as effective SERS active substrates for pathogen detection", Adv. Nano Res., 9(2), 113-122. http://doi.org/10.12989/anr.2020.9.2.113.   DOI
19 Serrano, M., Bartolome, M., Bravo, J.C., Paniagua, G., Ganan, J., Gallego-Pico, A. and Garcinuno, R.M.J.T. (2017), "On-line flow injection molecularly imprinted solid phase extraction for the preconcentration and determination of 1-hydroxypyrene in urine samples", Talanta, 166 375-382. https://doi.org/10.1016/j.talanta.2016.01.048.   DOI
20 Sava Gallis, D.F., Vogel, D.J., Vincent, G.A., Rimsza, J.M. and Nenoff, T.M. (2019), "NOx Adsorption and Optical Detection in Rare Earth Metal-Organic Frameworks", ACS Appl. Mater. Interf., 11(46), 43270-43277. https://doi.org/10.1021/acsami.9b16470   DOI
21 Shen, X., Cui, Y., Pang, Y. and Qian, H. (2012a), "Preconcentration and in situ electrochemical sensing of 1-hydroxypyrene on an electrodeposited poly(3-methylthiophene) film modified electrode", J. Electroanal. Chem., 667, 1-6. https://doi.org/10.1016/j.jelechem.2011.12.016.   DOI
22 Shen, X., Cui, Y., Pang, Y. and Qian, H.J.E.A. (2012b), "Graphene oxide nanoribbon and polyhedral oligomeric silsesquioxane assembled composite frameworks for pre-concentrating and electrochemical sensing of 1-hydroxypyrene", Electrochim. Acta, 59, 91-99. https://doi.org/10.1016/j.electacta.2011.10.037.   DOI
23 Zhang, K., Xie, X., Li, H., Gao, J., Nie, L., Pan, Y., Xie, J., Tian, D., Liu, W. and Fan, Q.J.A.M. (2017b), "Highly water-stable lanthanide-oxalate MOFs with remarkable proton conductivity and tunable luminescence", Adv. Mater., 29(34), 1701804. https://doi.org/10.1002/adma.201701804.   DOI
24 Sur, U.K.J.A.i.n.r. (2013), "Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology", Adv. Nano Res., 1(2), 111-124. https://doi.org/10.12989/anr.2013.1.2.111.   DOI
25 Wang, Q., Li, M., Peng, Z., Kirby, N., Deng, Y., Ye, L. and Geng, Y. (2021), "Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells", Sci. China Chem., 64(3), 478-487. https://doi.org/10.1007/s11426-020-9890-6.   DOI
26 Wu, G., Ma, J., Wang, S., Chai, H., Guo, L., Li, J., Ostovan, A., Guan, Y. and Chen, L. (2020), "Cationic metal-organic framework based mixed-matrix membrane for extraction of phenoxy carboxylic acid (PCA) herbicides from water samples followed by UHPLC-MS/MS determination", J. Hazard. Mater., 394, 122556. https://doi.org/10.1016/j.jhazmat.2020.122556.   DOI
27 Wu, S., Min, H., Shi, W. and Cheng, P. (2020), "Multicenter metal-organic framework-based ratiometric fluorescent sensors", Adv. Mater. 32(3), 1805871. https://doi.org/10.1002/adma.201805871.   DOI
28 Hu, Y., Du, C., Li, Y., Fan, L. and Li, X. (2015), "A gold nanoparticle-based colorimetric probe for rapid detection of 1-hydroxypyrene in urine", Analyst, 140(13), 4662-4667. http://doi.org/10.1039/C5AN00722D.   DOI
29 Wang, Q., Qin, Y., Li, M., Ye, L. and Geng, Y. (2020), "Molecular engineering and morphology control of polythiophene: Nonfullerene acceptor blends for high-performance solar cells", Adv. Energy Mater., 10(45), 2002572. https://doi.org/10.1002/aenm.202002572.   DOI
30 Zhou, J., Li, H., Zhang, H., Li, H., Shi, W. and Cheng, P.J.A.M. (2015), "A bimetallic lanthanide metal-organic material as a self-calibrating color-gradient luminescent sensor", Adv. Mater., 27(44), 7072-7077. https://doi.org/10.1002/adma.201502760.   DOI
31 Alekseenko, A.N., Zhurba, O.M., Merinov, A.V. and Shayakhmetov, S.F. (2020), "Determination of 1-hydroxypyrene as a biomarker for the effects of polycyclic aromatic hydrocarbons in urine by chromatography-mass spectrometry", J. Anal. Chem., 75(1), 84-89. https://doi.org/10.1134/S1061934820010025.   DOI
32 Gao, P., da Silva, E.B., Townsend, T., Liu, X. and Ma, L.Q. (2019), "Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution", Sci. Total Environ. 670, 800-805. https://doi.org/10.1016/j.scitotenv.2019.03.247.   DOI
33 Castro-Grijalba, A., Montes-Garcia, V., Cordero-Ferradas, M.J., Coronado, E., Perez-Juste, J. and Pastoriza-Santos, I. (2020), "SERS-based molecularly imprinted plasmonic sensor for highly sensitive PAH detection", ACS Sensors, 5(3), 693-702. https://doi.org/10.1021/acssensors.9b01882.   DOI
34 Chen, L., Ye, J.W., Wang, H.P., Pan, M., Yin, S.Y., Wei, Z.W., Zhang, L.Y., Wu, K., Fan, Y.N. and Su, C.Y.J.N.C. (2017), "Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence", Nat. Commun., 8(1), 15985. https://doi.org/10.1038/ncomms15985.   DOI
35 Tawfik, S.M., Huy, B.T., Sharipov, M., Abd-Elaal, A. and Lee, Y.-I. (2018a), "Enhanced fluorescence of CdTe quantum dots capped with a novel nonionic alginate for selective optosensing of ibuprofen", Sensor Actuat. B Chem., 256, 243-250. https://doi.org/10.1016/j.snb.2017.10.092.   DOI
36 Tawfik, S.M., Elmasry, M.R., Sharipov, M., Azizov, S., Lee, C.H. and Lee, Y.I. (2020), "Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection", Biosens. Bioelectron., 160, 112211. https://doi.org/10.1016/j.bios.2020.112211.   DOI
37 Tropp, J., Ihde, M.H., Williams, A.K., White, N.J., Eedugurala, N., Bell, N.C., Azoulay, J.D. and Bonizzoni, M. (2019), "A sensor array for the discrimination of polycyclic aromatic hydrocarbons using conjugated polymers and the inner filter effect", Chem. Sci., 10(44), 10247-10255. https://doi.org/10.1039/C9SC03405F.   DOI
38 Li, H., Han, W., Lv, R., Zhai, A., Li, X.L., Gu, W. and Liu, X. (2019b), "Dual-function mixed-lanthanide metal-organic framework for ratiometric water detection in bioethanol and temperature sensing", Anal. Chem., 91(3), 2148-2154. https://doi.org/10.1021/acs.analchem.8b04690.   DOI
39 Cui, Y., Song, R., Yu, J., Liu, M., Wang, Z., Wu, C., Yang, Y., Wang, Z., Chen, B. and Qian, G.J.A.M. (2015), "Dual-emitting MOF⊃ dye composite for ratiometric temperature sensing", Adv. Mater., 27(8), 1420-1425. https://doi.org/10.1002/adma.201404700.   DOI
40 Xu, X.Y., Lian, X., Hao, J.N., Zhang, C. and Yan, B.J.A.M. (2017a), "A double-stimuli-responsive fluorescent center for monitoring of food spoilage based on dye covalently modified EuMOFs: From sensory hydrogels to logic devices", Adv. Mater. 29(37), 1702298. https://doi.org/10.1002/adma.201702298.   DOI
41 Lee, S.H., Tawfik, S.M., Thangadurai, D.T. and Lee, Y.I. (2021), "Highly sensitive and selective detection of Alprenolol using upconversion nanoparticles functionalized with amphiphilic conjugated polythiophene", Microchem. J., 164, 106010. https://doi.org/10.1016/j.microc.2021.106010.   DOI
42 Kim, K.H., Jahan, S.A., Kabir, E. and Brown, R.J.J.E.I. (2013), "A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects", Environ. Int., 60, 71-80. https://doi.org/10.1016/j.envint.2013.07.019.   DOI
43 Lin, Y., Gao, X., Qiu, X., Liu, J., Tseng, C.-H., Zhang, J.J., Araujo, J.A. and Zhu, Y. (2021), "Urinary carboxylic acid metabolites as possible novel biomarkers of exposures to alkylated polycyclic aromatic hydrocarbons", Environ. Int., 147, 106325. https://doi.org/10.1016/j.envint.2020.106325   DOI
44 Li, Z., Cao, Y., Qin, H., Ma, Y., Pan, L. and Sun, J. (2022), "Integration of chemical and biological methods: A case study of polycyclic aromatic hydrocarbons pollution monitoring in Shandong Peninsula, China", J. Environ. Sci., 111, 24-37. https://doi.org/10.1016/j.jes.2021.02.025.   DOI
45 Li, J., Yuan, S., Qin, J.-S., Pang, J., Zhang, P., Zhang, Y., Huang, Y., Drake, H.F., Liu, W.R. and Zhou, H.C. (2020a), "Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection", Angew. Chem. Int. Edit., 59(24), 9319-9323. https://doi.org/10.1002/anie.202000702.   DOI
46 Li, C., Zeng, C., Chen, Z., Jiang, Y., Yao, H., Yang, Y. and Wong, W.T. (2020b), "Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water", J. Hazard. Mater., 384, 121498. https://doi.org/10.1016/j.jhazmat.2019.121498   DOI
47 Li, Y., Li, Y., Wang, Y., Ma, G., Liu, X., Li, Y. and Soar, J. (2020c), "Application of zeolitic imidazolate frameworks (ZIF-8)/ionic liquid composites modified nano-carbon paste electrode as sensor for electroanalytical sensing of 1-hydroxypyrene", Microchem. J., 159, 105433. https://doi.org/10.1016/j.microc.2020.105433.   DOI
48 Liang, Z., Li, M., Wang, Q., Qin, Y., Stuard, S.J., Peng, Z., Deng, Y., Ade, H., Ye, L. and Geng, Y. (2020), "Optimization requirements of efficient polythiophene: Nonfullerene organic solar cells", Joule, 4(6), 1278-1295. https://doi.org/10.1016/j.joule.2020.04.014.   DOI
49 Liu, C.Y., Chen, X.R., Chen, H.X., Niu, Z., Hirao, H., Braunstein, P. and Lang, J.P. (2020), "Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration", J. Am. Chem. Soc., 142(14), 6690-6697. https://doi.org/10.1021/jacs.0c00368.   DOI
50 Liang, Q., Jiao, X., Yan, Y., Xie, Z., Lu, G., Liu, J. and Han, Y.J.A.F.M. (2019), "Separating crystallization process of P3HT and O-IDTBR to construct highly crystalline interpenetrating network with optimized vertical phase separation", Adv. Funct. Mater. 29(47), 1807591. https://doi.org/10.1002/adfm.201807591.   DOI
51 Tawfik, S.M., Shim, J., Biechele-Speziale, D., Sharipov, M. and Lee, Y.I. (2018b), "Novel "turn off-on" sensors for highly selective and sensitive detection of spermine based on heparin-quenching of fluorescence CdTe quantum dots-coated amphiphilic thiophene copolymers", Sensors Actuat. B Chem., 257, 734-744. https://doi.org/10.1016/j.snb.2017.10.172.   DOI
52 Zhou, Y., Yang, Q., Cuan, J., Wang, Y., Gan, N., Cao, Y. and Li, T. (2018), "A pyrene-involved luminescent MOF for monitoring 1-hydroxypyrene, a biomarker for human intoxication of PAH carcinogens", Analyst, 143(15), 3628-3634. https://doi.org/10.1039/C8AN00909K.   DOI
53 Pang, Y.H., Huang, Y.Y., Li, W.Y., Yang, N.C. and Shen, X.F. (2020a), "Electrochemical detection of three monohydroxylated polycyclic aromatic hydrocarbons using electroreduced graphene oxide modified screen-printed electrode", Electroanalysis, 32(7), 1459-1467. https://doi.org/10.1002/elan.201900692.   DOI
54 Yang, M., Wang, Y., Ren, J., Li, M., Wang, Q., Li, N., Zhu, J. and Zou, X. (2019), "A rapid and sensitive method of determination of 1-hydroxypyrene glucuronide in urine by UPLC-FLD", Chromatographia, 82(5), 835-842. https://doi.org/10.1007/s10337-019-03713-0   DOI
55 Mattarozzi, M., Musci, M., Careri, M., Mangia, A., Fustinoni, S., Campo, L. and Bianchi, F.J.J.O.C.A. (2009), "A novel headspace solid-phase microextraction method using in situ derivatization and a diethoxydiphenylsilane fibre for the gas chromatography-mass spectrometry determination of urinary hydroxy polycyclic aromatic hydrocarbons", J. Chromatogr. A, 1216(30), 5634-5639. https://doi.org/10.1016/j.chroma.2009.05.072.   DOI
56 Gill, B., Jobst, K. and Britz-McKibbin, P. (2020), "Rapid screening of urinary 1-hydroxypyrene glucuronide by multisegment injection-capillary electrophoresis-tandem mass spectrometry: A high-throughput method for biomonitoring of recent smoke exposures", Anal. Chem., 92(19), 13558-13564. http://doi.org/10.1021/acs.analchem.0c03212   DOI
57 Habibullah-Al-Mamun, M., Ahmed, M.K. and Masunaga, S.J.A.i.e.r. (2018), "Polycyclic aromatic hydrocarbons (PAHs) in surface water from the coastal area of Bangladesh", Adv. Environ. Res., 7(3), 177-200. http://doi.org/10.12989/aer.2019.7.3.177.   DOI
58 Haldar, R., Heinke, L. and Woll, C. (2020), "Advanced photoresponsive materials using the metal-organic framework approach", Adv. Mater., 32(20), 1905227. http://doi.org/10.1002/adma.201905227.   DOI
59 Hao, J.N. and Yan, B. (2017), "Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor", Adv. Funct. Mater., 27(6), 1603856. http://doi.org/10.1002/adfm.201603856.   DOI
60 Zhou, H.Q., He, Y., Hu, J.Y., Chung, L.H., Gu, Q., Liao, W.M., Zeller, M., Xu, Z. and He, J. (2021), "Conjugated crosslinks boost the conductivity and stability of a single crystalline metal-organic framework", Chem. Commun., 57(2), 187-190. https://doi.org/10.1039/D0CC06765B.   DOI
61 Jin, R., Bu, D., Liu, G., Zheng, M., Lammel, G., Fu, J., Yang, L., Li, C., Habib, A., Yang, Y. and Liu, X. (2020), "New classes of organic pollutants in the remote continental environment - Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau", Environ. Int., 137, 105574. https://doi.org/10.1016/j.envint.2020.105574.   DOI
62 He, X.M., Zhu, G.T., Yin, J., Zhao, Q., Yuan, B.F. and Feng, Y.Q.J.J.O.C.A. (2014), "Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry", J. Chromatogr. A, 1351, 29-36.   DOI
63 Hu, Z., Deibert, B.J. and Li, J.J.C.S.R. (2014), "Luminescent metal-organic frameworks for chemical sensing and explosive detection", Chem. Soc. Rev. 43(16), 5815-5840. https://doi.org/10.1039/C4CS00010B.   DOI
64 Huang, R.W., Wei, Y.S., Dong, X.Y., Wu, X.H., Du, C.X., Zang, S.Q. and Mak, T.C.W. (2017), "Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework", Nat. Chem., 9(7), 689-697. https://doi.org/10.1038/nchem.2718.   DOI
65 Jongeneelen, F.J. (2014), "A guidance value of 1-hydroxypyrene in urine in view of acceptable occupational exposure to polycyclic aromatic hydrocarbons", Toxicol. Lett., 231(2), 239-248. https://doi.org/10.1016/j.toxlet.2014.05.001.   DOI
66 Luo, T.Y., Das, P., White, D.L., Liu, C., Star, A. and Rosi, N.L. (2020), "Turn-On" detection of gossypol using Ln3+-based metal-organic frameworks and Ln3+ salts", J. Am. Chem. Soc., 142(6), 2897-2904. https://doi.org/10.1021/jacs.9b11429.   DOI
67 Pang, Y., Huang, Y., Li, W., Feng, L. and Shen, X. (2019a), "Conjugated polyelectrolyte/graphene multilayer films for simultaneous electrochemical sensing of three monohydroxylated polycyclic aromatic hydrocarbons", ACS Appl. Nano Mater., 2(12), 7785-7794. https://doi.org/10.1021/acsanm.9b01821.   DOI
68 Pang, Y., Zhang, Y., Sun, X., Ding, H., Ma, T. and Shen, X. (2019b), "Synergistical accumulation for electrochemical sensing of 1-hydroxypyrene on electroreduced graphene oxide electrode", Talanta, 192, 387-394. https://doi.org/10.1016/j.talanta.2018.08.042.   DOI
69 Pang, Y., Yang, N., Shen, X., Zhang, Y. and Feng, L. (2020b), "Conjugated polymer self-assembled with graphene: Synthesis and electrochemical 1-hydroxypyrene sensor", Polymer, 188, 122139. https://doi.org/10.1016/j.polymer.2019.122139.   DOI
70 Liu, Y., Xian, K., Peng, Z., Gao, M., Shi, Y., Deng, Y., Geng, Y. and Ye, L. (2021), "Tuning the molar mass of P3HT via direct arylation polycondensation yields optimal interaction and high efficiency in nonfullerene organic solar cells", J. Mater. Chem. A, 9(35), 19874-19885. https://doi.org/10.1039/D1TA02253A.   DOI
71 Ma, J., Li, S., Wu, G., Wang, S., Guo, X., Wang, L., Wang, X., Li, J. and Chen, L. (2019), "v (vinylidene fluoride) for use in determination of sulfonylurea herbicides in aqueous environments by high performance liquid chromatography", J. Colloid Interf. Sci., 553, 834-844. https://doi.org/10.1016/j.jcis.2019.06.082.   DOI
72 Nsibande, S.A. and Forbes, P.B.C. (2020), "Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water", RSC Adv., 10(21), 12119-12128. https://doi.org/10.1039/C9RA10153E.   DOI
73 Phan-Quang, G.C., Yang, N., Lee, H.K., Sim, H.Y.F., Koh, C.S.L., Kao, Y.C., Wong, Z.C., Tan, E.K.M., Miao, Y.E., Fan, W., Liu, T., Phang, I.Y. and Ling, X.Y. (2019), "Tracking airborne molecules from Afar: Three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring", ACS Nano, 13(10), 12090-12099. https://doi.org/10.1021/acsnano.9b06486.   DOI
74 Phaomei, G. and Yaiphaba, N.J.A.I.N.R. (2015), "Ce3+ sensitize RE3+ (RE= Dy, Tb, Eu, Sm) doped LaPO4 nanophosphor with white emission tunability", Adv. Nano Res., 3(2), 55-66. http://doi.org/10.12989/anr.2015.3.2.055.   DOI
75 Pruneda-A lvarez, L.G., Perez-Vazquez, F.J., Ruiz-Vera, T., Ochoa-Martinez, A .C., Orta-Garcia, S.T., Jimenez-Avalos, J.A., Perez-Maldonado, I.N.J.E.S. and Research, P. (2016), "Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment", Environ. Sci. Pollut. Res. Int., 23(7), 6816-6825. https://doi.org/10.1007/s11356-015-5918-   DOI
76 Li, D., Cao, X., Zhang, Q., Ren, X., Jiang, L., Li, D., Deng, W. and Liu, H. (2019a), "Facile in situ synthesis of core-shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons", J. Mater. Chem. A., 7(23), 14108-14117. https://doi.org/10.1039/C9TA03690C.   DOI
77 Mallick, A., El-Zohry, A.M., Shekhah, O., Yin, J., Jia, J., Aggarwal, H., Emwas, A.H., Mohammed, O.F. and Eddaoudi, M. (2019), "Unprecedented ultralow detection limit of amines using a thiadiazole-functionalized Zr (IV)-based metal-organic framework", J. Am. Chem. Soc., 141(18), 7245-7249. https://doi.org/10.1021/jacs.9b01839   DOI
78 Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M.C. and Morais, S. (2019), "Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts", Environ. Int., 124, 180-204. https://doi.org/10.1016/j.envint.2018.12.052   DOI
79 Kumar, V., George, P., Singh, R.K., Chowdhury, P.J.M. and Treatment, W. (2021), "Enhanced transport of Lignosulfonate by integrating adsorption sweep in a liquid membrane module", Membr. Water Treat., 12(3), 95-106. https://doi.org/10.12989/mwt.2021.12.3.095.   DOI