Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.4.423

Influence of pozzolans on properties of cementitious materials: A review  

Garg, Rishav (Department of Civil Engineering, Galgotias College of Engineering and Technology)
Garg, Rajni (Department of Chemistry, Rayat Bahra University)
Eddy, Nnabuk Okon (Department of Pure and Industrial Chemistry, University of Nigerie)
Publication Information
Advances in nano research / v.11, no.4, 2021 , pp. 423-436 More about this Journal
Abstract
Use of additives/supplementary materials in partial substitution of cement is gaining widespread attention across the world due to the sustainability issue with production of cement. With their pozzolanic activity & filler effect, use of nano-pozzolans such as nano-silica has been proved as quite promising & cost-effective for use as supplementary cementitious materials. This study is aimed at highlighting the effect of partial substitution of cement/addition of various nano-pozzolans on the hydration, strength and microstructure of the cementitious materials. Further, the effect of incorporation of other pozzolans has also been discussed. Comparative account of pozzolanic activity of different pozzolans has also been critically analyzed. It has been found that the cement matrix gets improved in terms of its microstructure by partial substitution of cement/addition of pozzolan in appropriate amount resulting in enhancement of the bulk properties by consumption of portlandite. The improved compressive strength of cementitious materials not only results in enhancement of the durability but also the service life of the construction structures and results in reduction of the cost incurred in maintenance and repair. Thus, the cement demand can be decreased by the partial substitution of cement/addition of such materials. It will result in an ultimate reduction of the greenhouse effect and lead to sustainable development.
Keywords
cementitious materials; durability; nano-pozzolans; microstructure; strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Senff, L., Hotza, D., Repette, W.L., Ferreira, V.M. and Labrincha, J. (2009), "Influence of added nanosilica and/or silica fume on fresh and hardened properties of mortars and cement pastes", Adv. Appl. Ceram., 108(7), 418-428. https://doi.org/10.1179/174367609X422108.   DOI
2 Senff, L., Hotza, D., Repette, W.L., Ferreira, V.M. and Labrincha, J.A. (2010), "Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars", Adv. Appl. Ceram., 109(2), 104-110. https://doi.org/10.1179/174367509X12502621261659.   DOI
3 Shafiq, N., Kumar, R., Zahid, M. and Tufail, R.F. (2019), "Effects of modified metakaolin using nano-silica on the mechanical properties and durability of concrete", Materials, 12(14), 1-22. https://doi.org/10.3390/ma12142291.   DOI
4 Shaikh, F.U.A., Supit, S.W.M. and Sarker, P.K. (2014), "A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes", Mater. Des., 60, 433-442. https://doi.org/10.1016/j.matdes.2014.04.025.   DOI
5 Sharkawi, A.M., Abd-Elaty, M.A. and Khalifa, O.H. (2018), "Synergistic influence of micro-nano silica mixture on durability performance of cementious materials", Constr. Build. Mater., 164, 579-588. https://doi.org/10.1016/j.conbuildmat.2018.01.013.   DOI
6 Rodriguez, E.D., Bernal, S.A., Provis, J.L., Paya, J., Monzo, J.M. and Borrachero, M.V. (2013), "Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder", Cement Concrete Compos., 35(1), 1-11. https://doi.org/10.1016/j.cemconcomp.2012.08.025.   DOI
7 Saleh, N.J., Ibrahim, R.I. and Salman, A.D. (2015), "Characterization of nano-silica prepared from local silica sand and its application in cement mortar using optimization technique", Adv. Powder Technol., 26(4), 1123-1133. https://doi.org/10.1016/j.apt.2015.05.008.   DOI
8 Feng, D., Xie, N., Gong, C., Leng, Z., Xiao, H., Li, H. and Shi, X. (2013), "Portland cement paste modified by TiO2 nanoparticles: A microstructure perspective", Ind. Eng. Chem. Res., 52(33), 11575-11582. https://doi.org/10.1021/ie4011595.   DOI
9 Bescher, E., Rice, E.K., Ramseyer, C. and Roswurm, S. (2016), "Sulfate resistance of calcium sulphoaluminate cement", J. Struct. Integr. Maint., 1(3), 131-139. https://doi.org/10.1080/24705314.2016.1211235.   DOI
10 Djelloul, O.K., Menadi, B., Wardeh, G. and Kenai, S. (2018), "Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag", Adv. Concrete. Constr., 6(2), 103-121. https://doi.org/10.12989/acc.2018.6.2.103.   DOI
11 Horszczaruk, E., Aleksandrzak, M., Cendrowski, K., Jedrzejewski, R., Baranowska, J. and Mijowska, E. (2020), "Mechanical properties cement based composites modified with nanoFe3O4/SiO2", Constr. Build. Mater., 251, 5-10. https://doi.org/10.1016/j.conbuildmat.2020.118945.   DOI
12 Li, H., Xiao, H.G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Compos. Part B Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.   DOI
13 Kooshkaki, A. and Eskandari-Naddaf, H. (2019), "Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling", Constr. Build. Mater., 212, 176-191. https://doi.org/10.1016/j.conbuildmat.2019.03.243.   DOI
14 Singh, L.P., Bhattacharyya, S.K., Singh, P. and Ahalawat, S. (2012), "Granulometric synthesis and characterisation of dispersed nanosilica powder and its application in cementitious system", Adv. Appl. Ceram., 111(4), 220-227. https://doi.org/10.1179/1743676112Y.0000000002.   DOI
15 Singh, L.P., Goel, A., Bhattachharyya, S.K., Ahalawat, S., Sharma, U. and Mishra, G. (2015), "Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar", Int. J. Concrete. Struct. Mater., 9(2), 207-217. https://doi.org/10.1007/s40069-015-0099-2.   DOI
16 Sharma, U., Singh, L.P., Zhan, B. and Poon, C.S. (2019), "Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength", Cement Concrete Compos., 97, 312-321. https://doi.org/10.1016/j.cemconcomp.2019.01.007.   DOI
17 Jo, B.W., Kim, C.H., Tae, G. h. and Park, J.B. (2007), "Characteristics of cement mortar with nano-SiO2 particles", Constr. Build. Mater., 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020.   DOI
18 Jo, B.Wan, Chakraborty, S., Lee, S.T. and Lee, Y.S. (2019), "Durability study of silica fume-mortar exposed to the combined sulfate and chloride-rich solution", KSCE J. Civil. Eng., 23(1), 356-366. https://doi.org/10.1007/s12205-018-5809-2.   DOI
19 Kim, M.J., Kim, K.B. and Ann, K.Y. (2016), "The influence of C3A content in cement on the chloride transport", Adv. Mater. Sci. Eng., 5962821. https://doi.org/10.1155/2016/5962821.   DOI
20 Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y. and Shah, S.P. (2012), "Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials", Constr. Build. Mater., 37, 707-715. https://doi.org/10.1016/j.conbuildmat.2012.08.006.   DOI
21 Seifan, M., Mendoza, S. and Berenjian, A. (2020), "Mechanical properties and durability performance of fly ash based mortar containing nano- and micro-silica additives", Constr. Build. Mater., 252, 119121. https://doi.org/10.1016/j.conbuildmat.2020.119121.   DOI
22 Mustakim, S.M., Das, S.K., Mishra, J., Aftab, A., Alomayri, T.S., Assaedi, H.S. and Kaze, C.R. (2020), "Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica", Silicon, 13(8), 2415-2428. https://doi.org/10.1007/s12633-020-00593-0.   DOI
23 Mohsen, M.O., Al Ansari, M.S., Taha, R., Al Nuaimi, N. and Taqa, A.A. (2019), "Carbon nanotube effect on the ductility, flexural strength, and permeability of concrete", J. Nanomater., 6490984. https://doi.org/10.1155/2019/6490984.   DOI
24 Morsy, M.S., Al-Salloum, Y., Almusallam, T. and Abbas, H. (2014), "Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar", J. Therm. Anal. Calorim., 116(2), 845-852. https://doi.org/10.1007/s10973-013-3512-6.   DOI
25 Siang Ng, D., Paul, S.C., Anggraini, V., Kong, S.Y., Qureshi, T.S., Rodriguez, C.R., Liu, Q.F. and Savija, B. (2020), "Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars", Constr. Build. Mater., 258, 119627. https://doi.org/10.1016/j.conbuildmat.2020.119627.   DOI
26 Mohammed, B.S., Liew, M.S., Alaloul, W.S., Khed, V.C., Hoong, C.Y. and Adamu, M. (2018), "Properties of nano-silica modified pervious concrete", Case Stud. Constr. Mater., 8, 409-422. https://doi.org/10.1016/j.cscm.2018.03.009.   DOI
27 Aleem, S.A.E., Heikal, M. and Morsi, W.M. (2014), "Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica", Constr. Build. Mater., 59, 151-160. https://doi.org/10.1016/j.conbuildmat.2014.02.039.   DOI
28 Li, L.G., Zhu, J., Huang, Z.H., Kwan, A.K.H. and Li, L.J. (2017b), "Combined effects of micro-silica and nano-silica on durability of mortar", Constr. Build. Mater., 157, 337-347. https://doi.org/10.1016/j.conbuildmat.2017.09.105.   DOI
29 Senff, L., Hotza, D. and Labrincha, J. (2011), "Effect of diatomite addition on fresh and hardened properties of mortars investigated through mixture experiments", Adv. Appl. Ceram., 110(3), 142-150. https://doi.org/10.1179/1743676110Y.0000000009.   DOI
30 Xue, C., Qiao, H., Cao, H., Feng, Q. and Li, Q. (2021), "Analysis on the strength of cement mortar mixed with construction waste brick powder", Adv. Civil. Eng., 2021, 1-10. https://doi.org/10.1155/2021/8871280.   DOI
31 Qudoos, A., Jakhrani, S.H., Kim, H.G. and Ryou, J.S. (2019), "Influence of nano-silica on the leaching attack upon photocatalytic cement mortars", Int. J. Concr. Struct. Mater., 13(1), 35. https://doi.org/10.1186/s40069-019-0348-x.   DOI
32 Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nano silica - , silica fume - and fly ash - incorporated cement mortars", Mater. Res., 17(3), 570-582. https://doi.org/10.1590/S1516-14392014005000054.   DOI
33 Dhanya, B.S., Rathnarajan, S., Santhanam, M., Pillai, R.G. and Gettu, R. (2019), "Carbonation and its effect on microstructure of concrete with fly ASH and ground granulated blast furnace slag", Indian Concrete. J., 93(4), 10-21.
34 Ghafari, E., Ghahari, S.A., Feng, Y., Severgnini, F. and Lu, N. (2016), "Effect of Zinc oxide and Al-Zinc oxide nanoparticles on the rheological properties of cement paste", Compos. Part B Eng., 105, 160-166. https://doi.org/10.1016/j.compositesb.2016.08.040.   DOI
35 Li, L.G., Zheng, J.Y., Ng, P.L., Zhu, J. and Kwan, A.K.H. (2019), "Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete", Constr. Build. Mater., 223, 965-975. https://doi.org/10.1016/j.conbuildmat.2019.07.241.   DOI
36 Oltulu, M. and Sahin, R. (2011), "Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume", Mater. Sci. Eng. A, 528(22-23), 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054.   DOI
37 Niewiadomski, P., Stefaniuk, D. and Hola, J. (2017), "Microstructural analysis of self-compacting concrete modified with the addition of nanoparticles", Procedia Eng., 172, 776-783. https://doi.org/10.1016/j.proeng.2017.02.122.   DOI
38 Farzadnia, N., Abang Ali, A.A., Demirboga, R. and Anwar, M.P. (2013), "Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars", Cement Concrete Res., 48, 97-104. https://doi.org/10.1016/j.cemconres.2013.03.005.   DOI
39 Garg, R. and Garg, R. (2020), "Performance evaluation of polypropylene fiber waste reinforced concrete in presence of silica fume", Mater. Today Proc., 43, 809-816. https://doi.org/10.1016/j.matpr.2020.06.482.   DOI
40 Garg, R. and Garg, R. (2021), "Effect of zinc oxide nanoparticles on mechanical properties of silica fume-based cement composites", Mater. Today Proc., 43, 778-783. https://doi.org/10.1016/j.matpr.2020.06.168.   DOI
41 Li, L.G., Huang, Z.H., Zhu, J., Kwan, A.K.H. and Chen, H.Y. (2017a), "Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar", Constr. Build. Mater., 140, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.02.115.   DOI
42 Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.   DOI
43 Ramesh Kumar, G.B., Bhardwaj, A. and Sharma, U.K. (2018), "Cavitation resistance of concrete containing different material properties", Adv. Concrete Constr., 6(1), 15-28. https://doi.org/10.12989/acc.2018.6.1.015.   DOI
44 Nochaiya, T., Sekine, Y., Choopun, S. and Chaipanich, A. (2015), "Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive", J. Alloys Compd., 630, 1-10. https://doi.org/10.1016/j.jallcom.2014.11.043.   DOI
45 Khurram, N., Khan, K., Saleem, M.U., Amin, M.N. and Akmal, U. (2018), "Effect of elevated temperatures on mortar with naturally occurring volcanic ash and its blend with electric arc furnace slag", Adv. Mater. Sci. Eng., 5324036. https://doi.org/10.1155/2018/5324036.   DOI
46 Kontoleontos, F., Tsakiridis, P.E., Marinos, A., Kaloidas, V. and Katsioti, M. (2012), "Influence of colloidal nanosilica on ultrafine cement hydration: Physicochemical and microstructural characterization", Constr. Build. Mater., 35, 347-360. https://doi.org/10.1016/j.conbuildmat.2012.04.022.   DOI
47 Lim, S. and Mondal, P. (2015), "Effects of incorporating nanosilica on carbonation of cement paste", J. Mater. Sci., 50(10), 3531-3540. https://doi.org/10.1007/s10853-015-8910-7.   DOI
48 Liu, H., Zhang, Y., Tong, R., Zhu, Z. and Lv, Y. (2020), "Effect of nanosilica on impermeability of cement-fly ash system", Adv. Civil. Eng., 1243074. https://doi.org/10.1155/2020/1243074.   DOI
49 Jena, T. and Panda, K.C. (2018), "Mechanical and durability properties of marine concrete using fly ash and silpozz", Adv. Concrete Constr., 6(1), 47-68. https://doi.org/10.12989/acc.2018.6.1.047.   DOI
50 Imam, A., Kumar, V. and Srivastava, V. (2018), "Review study towards effect of Silica Fume on the fresh and hardened properties of concrete", Adv. Concrete Constr., 6(2), 145-157. https://doi.org/10.12989/acc.2018.6.2.145.   DOI
51 Machner, A., Zajac, M., Ben Haha, M., Kjellsen, K.O., Geiker, M.R. and De Weerdt, K. (2018), "Stability of the hydrate phase assemblage in Portland composite cements containing dolomite and metakaolin after leaching, carbonation, and chloride exposure", Cement Concrete Compos., 89, 89-106. https://doi.org/10.1016/j.cemconcomp.2018.02.013.   DOI
52 Maes, M. and De Belie, N. (2014), "Resistance of concrete and mortar against combined attack of chloride and sodium sulphate", Cement Concrete. Compos., 53, 59-72. https://doi.org/10.1016/j.cemconcomp.2014.06.013.   DOI
53 Ehsani, A., Nili, M. and Shaabani, K. (2017), "Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash", KSCE J. Civil. Eng., 21(5), 1854-1865. https://doi.org/10.1007/s12205-016-0853-2.   DOI
54 Karunarathne, V.K., Paul, S.C. and Savija, B. (2019), "Development of nano-SiO2 and bentonite-based mortars for corrosion protection of reinforcing steel", Materials, 12(16), 2622. https://doi.org/10.3390/ma12162622.   DOI
55 Lothenbach, B., Le Saout, G., Ben Haha, M., Figi, R. and Wieland, E. (2012), "Hydration of a low-alkali CEM III/B-SiO2 cement (LAC)", Cement Concrete Res., 42(2), 410-423. https://doi.org/10.1016/j.cemconres.2011.11.008.   DOI
56 Oltulu, M. and Sahin, R. (2013), "Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study", Energy Build., 58, 292-301. https://doi.org/10.1016/j.enbuild.2012.12.014.   DOI
57 Hospodarova, V., Stevulova, N., Briancin, J. and Kostelanska, K. (2018), "Investigation of waste paper cellulosic fibers utilization into cement based building materials", Buildings, 8(3), 43. https://doi.org/10.3390/buildings8030043.   DOI
58 Hosseini, P., Abolhasani, M., Mirzaei, F., Kouhi Anbaran, M.R., Khaksari, Y. and Famili, H. (2018), "Influence of two types of nanosilica hydrosols on short-term properties of sustainable white portland cement mortar", J. Mater. Civil. Eng., 30(2), 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002152.   DOI
59 Mohamed, A.M. (2016), "Influence of nano materials on flexural behavior and compressive strength of concrete", HBRC J., 12(2), 212-225. https://doi.org/10.1016/j.hbrcj.2014.11.006.   DOI
60 Garg, R., Garg, R., Bansal, M. and Aggarwal, Y. (2020), "Experimental study on strength and microstructure of mortar in presence of micro and nano-silica", Mater. Today Proc., 43, 769-777. https://doi.org/10.1016/j.matpr.2020.06.167.   DOI
61 Hakamy, A. (2020), " Effect of CaCO3 nanoparticles on the microstructure and fracture toughness of ceramic nanocomposites", J. Taibah Univ. Sci., 14(1), 1201-1207. https://doi.org/10.1080/16583655.2020.1809840.   DOI
62 Wongkeo, W., Thongsanitgarn, P., Chindaprasirt, P. and Chaipanich, A. (2013), "Thermogravimetry of ternary cement blends", J. Therm. Anal. Calorim., 113(3), 1079-1090. https://doi.org/10.1007/s10973-013-3017-3.   DOI
63 Stynoski, P., Mondal, P. and Marsh, C. (2015), "Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar", Cement Concrete Compos., 55, 232-240. https://doi.org/10.1016/j.cemconcomp.2014.08.005.   DOI
64 Supit, S.W. and Shaikh, F.U. (2014), "Effect of nano-CaCO3 on compressive strength development of high volume fly ash mortars and concretes", J. Adv. Concrete. Technol., 12(6), 178-186. https://doi.org/10.3151/jact.12.178.   DOI
65 Wang, L., Zheng, D., Zhang, S., Cui, H. and Li, D. (2016), "Effect of nano-SiO2 on the hydration and microstructure of Portland cement", Nanomaterials, 6(12), 241. https://doi.org/10.3390/nano6120241.   DOI
66 Yang, H., Che, Y. and Leng, F. (2018), "High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: Microstructure and strength development", Sci. Rep., 8(1), 1-11. https://doi.org/10.1038/s41598-018-34851-4.   DOI
67 Stefanidou, M. and Papayianni, I. (2012), "Influence of nano-SiO2 on the Portland cement pastes", Compos. Part B Eng., 43(6), 2706-2710. https://doi.org/10.1016/j.compositesb.2011.12.015.   DOI
68 Heikal, M., El-Didamony, H., Sokkary, T.M.M. and Ahmed, I.A.A. (2013), "Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature", Constr. Build. Mater., 38, 1180-1190. https://doi.org/10.1016/j.conbuildmat.2012.09.069.   DOI
69 Ylmen, R., Jaglid, U., Steenari, B.-M. and Panas, I. (2009), "Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques", Cement Concrete Res., 39(5), 433-439. https://doi.org/10.1016/j.cemconres.2009.01.017.   DOI
70 Younis, K.H. and Mustafa, S.M. (2018), "Feasibility of using nanoparticles of SiO2 to improve the performance of recycled aggregate concrete", Adv. Mater. Sci. Eng., 1512830. https://doi.org/10.1155/2018/1512830.   DOI
71 Hou, P., Kawashima, S., Kong, D., Corr, D.J., Qian, J. and Shah, S.P. (2013), "Modification effects of colloidal nanoSiO2 on cement hydration and its gel property", Compos. Part B Eng., 45(1), 440-448. https://doi.org/10.1016/j.compositesb.2012.05.056.   DOI
72 Heikal, M., Abd El Aleem, S. and Morsi, W.M. (2013), "Characteristics of blended cements containing nano-silica", HBRC J., 9(3), 243-255. https://doi.org/10.1016/j.hbrcj.2013.09.001.   DOI
73 Ghafoori, N., Batilov, I., Najimi, M. and Sharbaf, M.R. (2018), "Sodium sulfate resistance of mortars containing combined nanosilica and microsilica", J. Mater. Civil. Eng., 30(7), 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002318.   DOI
74 Gunasekara, C., Sandanayake, M., Zhou, Z., Law, D.W. and Setunge, S. (2020), "Effect of nano-silica addition into high volume fly ash-hydrated lime blended concrete", Constr. Build. Mater., 253, 119205. https://doi.org/10.1016/j.conbuildmat.2020.119205.   DOI
75 Haruehansapong, S., Pulngern, T. and Chucheepsakul, S. (2014), "Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2", Constr. Build. Mater., 50, 471-477. https://doi.org/10.1016/j.conbuildmat.2013.10.002.   DOI
76 Horszczaruk, E., Mijowska, E., Cendrowski, K., Mijowska, S. and Sikora, P. (2014), "Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar", Constr. Build. Mater., 66, 418-421. https://doi.org/10.1016/j.conbuildmat.2014.05.061.   DOI
77 Hosseinpourpia, R., Varshoee, A., Soltani, M., Hosseini, P. and Ziaei Tabari, H. (2012), "Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites", Constr. Build. Mater., 31, 105-111. https://doi.org/10.1016/j.conbuildmat.2011.12.102.   DOI
78 Zapata, L.E., Portela, G., Suarez, O.M. and Carrasquillo, O. (2013), "Rheological performance and compressive strength of superplasticized cementitious mixtures with micro/nano-SiO2 additions", Constr. Build. Mater., 41, 708-716. https://doi.org/10.1016/j.conbuildmat.2012.12.025.   DOI
79 Yu, J., Zhang, M., Li, G., Meng, J. and Leung, C.K.Y. (2020), "Using nano-silica to improve mechanical and fracture properties of fiber-reinforced high-volume fly ash cement mortar", Constr. Build. Mater., 239, 117853. https://doi.org/10.1016/j.conbuildmat.2019.117853.   DOI
80 Yue, Y., Zhou, Y., Xing, F., Gong, G., Hu, B. and Guo, M. (2020), "An industrial applicable method to improve the properties of recycled aggregate concrete by incorporating nano-silica and micro-CaCO3", J. Clean. Prod., 259, 120920. https://doi.org/10.1016/j.jclepro.2020.120920.   DOI