Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.4.393

Analytical and mathematical simulation for nonlinear stability of scale-dependent magneto-electro-elastic system  

Li, Bin (School of Mechanical Engineering, Wuhan Polytechnic University)
Xu, Xiaojia (School of Mechanical Engineering, Wuhan Polytechnic University)
Hu, Zhigang (School of Mechanical Engineering, Wuhan Polytechnic University)
Liu, Yuzuo (School of Mechanical Engineering, Wuhan Polytechnic University)
Qi, Menghui (Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology)
Zheng, Zengquan (Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology)
Publication Information
Advances in nano research / v.11, no.4, 2021 , pp. 393-403 More about this Journal
Abstract
By using differential quadrature method (DQM), a numerical investigation was provided for nonlinear stability behavior of magneto-electro-elastic (MEE) cylindrical shells at microscale. It is assumed that the cylindrical shell has been subjected to compressive loads leading to buckling phenomena in geometrically nonlinear regime. The non-uniformity of strain field has been inserted in the formulation for considering the microscale effects. The material properties of the shell are considered to be inhomogeneous with graded distribution. After solving the governing equations using DQM, it is realized that if the nanoscale shell is subjected to electrical and magnetic fields, the post-buckling path may be changed with the value of electrical voltage and magnetic potential. Also, strain gradient effects have remarkable influence on post-buckling curves and critical voltages.
Keywords
classic shell theory; magneto-electro-elastic materials; nonlinear stability; smart material; strain gradient theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fang, J., Liu, C., Simos, T.E. and Famelis, I.T. (2020), "Neural network solution of single-delay differential equations", Mediterranean J. Math., 17(1), 1-15. https://doi.org/10.1007/s00009-019-1452-5.   DOI
2 Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039.   DOI
3 Ke, L.L. and Wang, Y. S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E, 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.   DOI
4 Kovalnogov, V.N., Simos, T.E., and Tsitouras, C. (2020), "Ninth-order, explicit, two-step methods for second-order inhomogeneous linear IVPs", Math. Method Appl. Sci., 43(7), 4918-4926. https://doi.org/10.1002/mma.6246.   DOI
5 Ma, L.H., Ke, L.L., Reddy, J.N., Yang, J., Kitipornchai, S. and Wang, Y.S. (2018), "Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061.   DOI
6 Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013.   DOI
7 Li, T., Dai, Z., Yu, M. and Zhang, W. (2021), "Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths", Eng. Appl. Comput. Fluid Mech., 15(1), 549-560. https://doi.org/10.1080/19942060.2021.1895321.   DOI
8 Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.   DOI
9 Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017a), "Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations", Physica B, 521, 102-111. https://doi.org/10.1016/j.physb.2017.06.058.   DOI
10 Heydarpour, Y. and Malekzadeh, P. (2019), "Dynamic stability of cylindrical nanoshells under combined static and periodic axial loads", J. Brazil. Soc. Mech. Sci. Eng., 41(4), 184. https://doi.org/10.1007/s40430-019-1675-1.   DOI
11 Simos, T.E. and Tsitouras, C. (2020), "Explicit, ninth order, two step methods for solving inhomogeneous linear problems x"(t) = Λx(t) + f(t)", Appl. Numer. Math., 153, 344-351. https://doi.org/10.1016/j.apnum.2020.03.003.   DOI
12 Sun, J., Aslani, F., Wei, J. and Wang, X. (2021), "Electromagnetic absorption of copper fiber oriented composite using 3D printing", Constr. Build. Mater., 300, 124026. https://doi.org/10.1016/j.conbuildmat.2021.124026.   DOI
13 Chen, C., Wang, X., Wang, Y., Yang, D., Yao, F., Zhang, W. and Hu, D. (2020), "Additive manufacturing of piezoelectric materials", Adv. Funct. Mater., 30(52), 2005141. https://doi.org/10.1002/adfm.202005141.   DOI
14 Ebrahimi, F. and Barati, M.R. (2019c), "Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects", Microsyst. Technol., 25(1), 175-187. https://doi.org/10.1007/s00542-018-3946-7.   DOI
15 Tan, L., Sun, Y., Wei, C., Tao, Y., Tian, Y., An, Y. and Feng, J. (2021), "Design of robust, lithiophilic, and flexible inorganic-polymer protective layer by separator engineering enables dendrite-free lithium metal batteries with LiNi0.8Mn0.1Co0.1O2 cathode", Small, 17(13), 2007717. https://doi.org/10.1002/smll.202007717.   DOI
16 Uzun, B. and Civalek, O. (2019), "Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method", Adv. Nano Res., 7(2), 99-108. https://doi.org/10.12989/anr.2019.7.2.099.   DOI
17 Xu, X. and Nieto-Vesperinas, M. (2019), "Azimuthal imaginary Poynting momentum density", Phys. Rev. Lett., 123(23), 233902. https://doi.org/10.1103/PhysRevLett.123.233902.   DOI
18 Yan, D., Wang, W. and Chen, Q. (2020), "Fractional-order modeling and nonlinear dynamic analyses of the rotor-bearing-seal system", Chaos Soliton Fract., 133, 109640. https://doi.org/10.1016/j.chaos.2020.109640.   DOI
19 Barati, M.R. and Shahverdi, H. (2021), "Assessment of nonlinear vibrations of thin plates undergoing large deflection and moderate rotation using Jacobi elliptic functions", Mech. Based Des. Struct., 1-17. https://doi.org/10.1080/15397734.2021.1956329.   DOI
20 Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2016), "Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation", Compos. Part B Eng., 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052.   DOI
21 Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.   DOI
22 Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020a), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157-167. https://doi.org/10.12989/anr.2020.8.2.157.   DOI
23 Medvedev, M.A., Simos, T.E. and Tsitouras, C. (2020), "Explicit, Eighth-Order, Four-Step Methods for Solving y"= f(x,y)", Bull. Malaysian Math. Sci. Soc., 43(5), 3791-3807. https://doi.org/10.1007/s40840-019-00879-6.   DOI
24 Zhang, C. and Ou, J. (2015), "Modeling and dynamical performance of the electromagnetic mass driver system for structural vibration control", Eng. Struct., 82, 93-103. https://doi.org/10.1016/j.engstruct.2014.10.029.   DOI
25 Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020a), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Adv. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.   DOI
26 Waksmanski, N. and Pan, E. (2017), "An analytical three-dimensional solution for free vibration of a magneto-electro-elastic plate considering the nonlocal effect", J. Intell. Mater. Syst. Struct., 28(11), 1501-1513. https://doi.org/10.1177%2F1045389X16672734.   DOI
27 Zeighampour, H., Beni, Y.T. and Dehkordi, M.B. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin Wall. Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037.   DOI
28 Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.   DOI
29 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.   DOI
30 Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017b), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Physica B, 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030.   DOI
31 Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircraft Spacecraft Sci., 5(6), 671-689. https://doi.org/10.12989/aas.2018.5.6.671.   DOI
32 Dai, Z., Guo, S., Gong, Y. and Wang, Z. (2021a), "Semiconductor flexoelectricity in graphite-doped SrTiO3 ceramics", Ceram. Int., 47(5), 6535-6539. https://doi.org/10.1016/j.ceramint.2020.10.239.   DOI
33 Ebrahimi, F. and Barati, M.R. (2019b), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano Res., 7(1), 63-75. http://doi.org/10.12989/anr.2019.7.1.063.   DOI
34 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
35 Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.   DOI
36 Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. https://doi.org/10.1115/1.1380385.   DOI
37 Ahmed, R.A., Mustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020b), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.   DOI
38 Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020c), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.   DOI
39 Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. https://doi.org/10.12989/sem.2021.78.1.015.   DOI
40 Qiao, Y.X., Sheng, S.L., Zhang, L.M., Chen, J., Yang, L.L., Zhou, H.L. and Zheng, Z.B. (2021), "Friction and wear behaviors of a high nitrogen austenitic stainless steel Fe-19Cr-15Mn-0.66 N". J. Min. Metall, 57(2), 285-293. https://doi.org/10.2298/JMMB201026025Q.   DOI
41 Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020b), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.   DOI
42 She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.   DOI
43 Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.   DOI
44 Zhang, X. and Zhang, Y. (2021a), "Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field. International journal of thermal sciences", 164, 106897. https://doi.org/10.1016/j.ijthermalsci.2021.106897.   DOI
45 Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Therm. Stresses, 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.   DOI
46 Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.   DOI
47 Barati, M.R. and Zenkour, A.M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control, 24(10), 1910-1926. https://doi.org/10.1177%2F1077546316672788.   DOI
48 Bich, D.H., Nguyen, N.X. and Van Tung, H. (2013), "Postbuckling of functionally graded cylindrical shells based on improved Donnell equations", Vietnam J. Mech., 35(1), 1-15. https://doi.org/10.15625/0866-7136/35/1/2894.   DOI
49 Zhang, X. and Zhang, Y. (2021b), "Heat transfer and flow characteristics of Fe3O4-water nanofluids under magnetic excitation", Int. J. Therm. Sci., 163, 106826. https://doi.org/10.1016/j.ijthermalsci.2020.106826.   DOI
50 Zhao, X., Zhu, W.D. and Li, Y.H. (2020a), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.   DOI
51 Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020d), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.   DOI
52 Simos, T.E. and Tsitouras, C. (2021), "Evolutionary derivation of Runge-Kutta pairs for addressing inhomogeneous linear problems", Numer. Algorithms, 87(2), 511-525. https://doi.org/10.1007/s11075-020-00976-9.   DOI
53 Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.   DOI
54 Medvedeva, M.A., Simos, T.E. and Tsitouras, C. (2021a), "Sixth-order, P-stable, Numerov-type methods for use at moderate accuracies", Math. Method. Appl. Sci., 44(8), 6923-6930. https://doi.org/10.1002/mma.7233.   DOI
55 Medvedeva, M.A., Simos, T.E. and Tsitouras, C. (2021b), "Exponential integrators for linear inhomogeneous problems", Math. Method. Appl. Sci., 44(1), 937-944. https://doi.org/10.1002/mma.6802.   DOI
56 Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020a), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.   DOI
57 Zhu, W., Deng, M., Chen, D., Zhang, Z., Chai, W., Chen, D. and Hao, Y. (2020), "Dual-phase CsPbCl3-Cs4PbCl6 perovskite films for self-powered, visible-blind UV photodetectors with fast response", ACS Appl. Mater. Interfac., 12(29), 32961-32969. https://doi.org/10.1021/acsami.0c09910.   DOI
58 Zhao, N., Deng, L., Luo, D. and Zhang, P. (2020b), "One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor", Appl. Surf. Sci., 526, 146696. https://doi.org/10.1016/j.apsusc.2020.146696.   DOI
59 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.   DOI
60 Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292(3-5), 626-644. https://doi.org/10.1016/j.jsv.2005.08.004.   DOI
61 Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020h), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.   DOI
62 Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A.M. S. and Barati, M.R. (2020b), "Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multiphase magneto-electro-elastic beams", J. Magnetism. Magnet. Mater., 503, 166649. https://doi.org/10.1016/j.jmmm.2020.166649.   DOI
63 Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.   DOI
64 Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020e), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.   DOI
65 Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.   DOI
66 Dai, Z., Xie, J., Fan, X., Ding, X., Liu, W., Zhou, S. and Ren, X. (2020), "Enhanced energy storage properties and stability of Sr (Sc0.5Nb0.5)O3 modified 0.65BaTiO3-0.35Bi0.5Na0.5TiO ceramics", Chem. Eng. J., 397, 125520. https://doi.org/10.1016/j.cej.2020.125520.   DOI
67 Dai, Z., Xie, J., Chen, Z., Zhou, S., Liu, J., Liu, W. and Ren, X. (2021b), "Improved energy storage density and efficiency of (1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3NbO3 lead-free ceramics", Chem. Eng. J., 410, 128341. https://doi.org/10.1016/j.cej.2020.128341.   DOI