Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets |
Kiarasi, Faraz
(Department of Mechanical Engineering, University of Eyvanekey)
Babaei, Masoud (Department of Mechanical Engineering, University of Eyvanekey) Mollaei, Somayeh (Department of Civil Engineering, University of Bonab) Mohammadi, Mokhtar (Department of Information Technology, College of Engineering and Computer Science, Lebanese French University) Asemi, Kamran (Department of Mechanical Engineering, Islamic Azad University) |
1 | Khadimallah, M.A., Hussain, M., Khedher, K.M., Bouzgarrou, S.M., Al Naim, A.F., Naeem, M.N. and Tounsi, A. (2020), "Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model", Adv. Nano Res., 9(4), 251-261. http://doi.org/10.12989/anr.2020.9.4.251 DOI |
2 | Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. http://doi.org/10.12989/anr.2020.9.3.157. DOI |
3 | Lefebvre, L.P., Banhart, J. and Dunand, D.C. (2008), "Porous metals and metallic foams: current status and recent developments", Adv. Eng. Mater., 10(9), 775-787. https://doi.org/10.1002/adem.200800241. DOI |
4 | Leissa, A.W. (1993), Vibration of Shells, American Institute of Physics, New York, U.S.A. |
5 | Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J. and Lee, W.R. (2015), "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites", J. Ind. Eng. Chem., 21, 11-25. https://doi.org/10.1016/j.jiec.2014.03.022. DOI |
6 | Nematollahi, M.S., Mohammadi, H., Dimitri, R. and Tornabene, F. (2020), "Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams", Appl. Sci., 10(16), 5669. https://doi.org/10.3390/app10165669. DOI |
7 | Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, New York, U.S.A. |
8 | Qu, Y., Chen, Y., Long, X., Hua, H. and Meng, G. (2013), "A variational method for free vibration analysis of joined cylindrical-conical shells", J. Vib. Control, 19(6), 2319-2334. https://doi.org/10.1177/1077546312456227. DOI |
9 | Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlinear Dyn., 90, 899-914. https://doi.org/10.1007/s11071-017-3701-0. DOI |
10 | Soureshjani, A.H., Talebitooti, R. and Talebitooti, M. (2020a), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aerosp. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559. DOI |
11 | Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013. DOI |
12 | Kang, J.H. (2012), "Three-dimensional vibration analysis of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198. https://doi.org/10.1016/j.jsv.2012.04.021. DOI |
13 | Lee, J. (2018), "Free vibration analysis of joined conical-cylindrical shells by matched Fourier-Chebyshev collocation method", J. Mech. Sci. Technol., 32(10), 4601-4612. https://doi.org/10.1007/s12206-018-0907-0. DOI |
14 | Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041. DOI |
15 | Gibson, L.J., Ashby, M. (1982), "The mechanics of three-dimensional cellular materials", Proc. Math. Phys. Eng. Sci., 382(1782), 43-59. https://doi.org/10.1098/rspa.1982.0088. DOI |
16 | Akbas, S.D. (2017c), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764. DOI |
17 | Ashby, M.F., Evans, T., Fleck, N.A., Hutchinson, J., Wadley, H. and Gibson, L. (2000), Metal foams: A design guide, Elsevier. |
18 | Babaei, M. and Asemi, K. (2020), "Stress analysis of functionally graded saturated porous rotating thick truncated cone", Mech. Based Des. Struct., 1-28. https://doi.org/10.1080/15397734.2020.1753536. DOI |
19 | Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of joined conical-conical shells", Thin Wall. Struct., 120, 446-457. https://doi.org/10.1016/j.tws.2017.06.032. DOI |
20 | Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-NejadParizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(7)- 1580-1588. doi:10.1142/S1758825119500686. DOI |
21 | Choi, J., Lakes, R. (1995), "Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative poisson's ratio", Int. J. Mech. Sci., 37(1), 51-59. https://doi.org/10.1016/0020-7403(94)00047-N. DOI |
22 | Wu, S.H., Qu, Y.G., Huang, X. C. and Hua, H. X. (2012), "Free vibration analysis on combined cylindrical-spherical shell", Appl. Mech. Mater., 226, 3-8. https://doi.org/10.4028/www.scientific.net/amm.226-228.3 DOI |
23 | Thambiratnam, D.P. and Thevendran, V. (1988), "Optimum design of conical shells for free vibration", Comput. Struct., 29(1), 133-140. https://doi.org/10.1016/0045-7949(88)90178-2. DOI |
24 | Tjong, S.C. (2013), "Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets", Mater. Sci. Eng. R Rep., 74(10), 281-350. https://doi.org/10.1016/j.mser.2013.08.001. DOI |
25 | Wicklein, M. and Thoma, K. (2005), "Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam", Mater. Sci. Eng., 397(1-2), 391-399. https://doi.org/10.4028/www.scientific.net/AMM.226-228.3. DOI |
26 | Xiang, J. and Matsumoto, T. (2011), "Vibration analysis of conical shell based on wavelet finite element method", Trans Jascome, 11, 101-106. |
27 | Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/SCS.2020.35.2.249. DOI |
28 | Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011. DOI |
29 | Smith, B.H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W. and Arwade, S. R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res, 71, 1-10. https://doi.org/10.1016/j.jcsr.2011.10.028. DOI |
30 | Hussain, M., Naeem, M. N. and Tounsi, A. (2020b), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. http://doi.org/10.12989/anr.2020.8.3.229. DOI |
31 | Babaei, M., Asemi, K. and Kiarasi, F. (2020), "Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1864401. DOI |
32 | Soureshjani, A.H., Talebitooti, R. and Talebitooti M., (2020b), "Thermal effects on the free vibration of joined FG-CNTRC conical-conical shells", Thin Wall. Struct., 156, 106960. https://doi.org/10.1016/j.tws.2020.106960. DOI |
33 | Xia, X. C., Chen, X. W., Zhang, Z., Chen, X., Zhao, W. M., Liao, B. and Hur, B. (2013), "Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam", J. Magnes. Alloy, 1(4), 330-335. https://doi.org/10.1016/j.jma.2013.11.006. DOI |
34 | Zhao, S., Yang, Z., Kitipornchai, S. and Yang, J. (2020), "Dynamic instability of functionally graded porous arches reinforced by graphene platelets", Thin Wall. Struct., 147, 106491. https://doi.org/10.1016/j.tws.2019.1r06491. DOI |
35 | Asgari, M. (2015), "Two dimensional functionally graded material finite thick hollow cylinder axisymmetric vibration mode shapes analysis based on exact elasticity theory", J. Theor. Appl. Mech., 45(2), https://doi.org/3.10.1515/jtam-2015-0008. DOI |
36 | Babaei, M., Asemi, K., Safarpour, P. (2019), "Natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory", J. Solid Mech., 11(3), 615-634. https://doi: 10.22034/jsm.2019.666691. DOI |
37 | Babaei, M., Asemi, K. and Kiarasi, F. (2021) "Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials", Thin Wall. Struct., 164, 107852. https://doi.org/10.1016/j.tws.2021.107852. DOI |
38 | Bagheri, H., Kiani, Y. and Eslami, M.R. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mech, 229, 2751-2764. https://doi.org/10.1007/s00707-018-2133-3 DOI |
39 | Bagheri, H., Kiani, Y., Bagheri, N. and Eslami, M.R. (2020), "Free vibration of joined cylindrical-hemispherical FGM shells", Arch. Appl. Mech., 90, 2185-2199. https://doi.org/10.1007/s00419-020-01715-1. DOI |
40 | Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023 DOI |
41 | Duarte, I., Ventura, E., Olhero, S. andFerreira, J. M. (2015), "An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes", Carbon, 95, 589-600. https://doi.org/10.1016/j.carbon.2015.08.065. DOI |
42 | Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865. DOI |
43 | Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. http://doi.org/10.12989/anr.2020.8.3.215. DOI |
44 | Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. http://doi.org/10.12989/anr.2015.3.1.029. DOI |
45 | Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472. DOI |
46 | Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0. DOI |
47 | Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals, Elsevier. |
48 | Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. http://doi.org/10.12989/sem.2019.71.1.099. DOI |
49 | Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108(1), 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065. DOI |
50 | Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009. DOI |
51 | Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013. DOI |
52 | Gia Ninh, D., Tri Minh, V., Van Tuan, N., Chi Hung, N. and Van Phong, D. (2020), "Novel numerical approach for free vibration of nanocomposite joined conical-cylindrical-conical shells", AIAA J., 59(1), 366-378. https://doi.org/10.2514/1.J059518. DOI |
53 | Hassani, A., Habibolahzadeh, A. and Bafti, H. (2012), "Production of graded aluminum foams via powder space holder technique", Mater. Des., 40, 510-515. https://doi.org/10.1016/j.matdes.2012.04.024. DOI |
54 | Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. http://doi.org/10.12989/was.2018.27.1.059. DOI |
55 | Soedel, W. (2004), Vibrations of Shells and Plates, Marcel Dekker, New York, U.S.A. https://doi.org/10.1121/1.1873932. DOI |
56 | Shakouri, M. and Kochakzadeh, M.A. (2014), "Free vibration analysis of joined conical shells analytical and experimental study", Thin Wall. Struct., 85(1), 350-358. https://doi.org/10.1016/j.tws.2014.08.022. DOI |
57 | Irie T., Yamada G. and Muramoto Y. (1984), "Free vibration of joined conical-cylindrical shells", J. Sound Vib., 95(1), 31-39. https://doi.org/10.1016/0022-460X(84)90256-6. DOI |
58 | Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375. DOI |
59 | Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579. DOI |
60 | Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107 DOI |
61 | Asemi, K., Salehi, M. and Akhlaghi, M. (2014), "Transient thermal stresses in functionally graded thick truncated cones by graded finite element method", Int. J. Press. Vessel, 119, 52-61. https://.doi.org/10.1016/j.ijpvp.2014.03.002. DOI |
![]() |