Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.4.361

Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets  

Kiarasi, Faraz (Department of Mechanical Engineering, University of Eyvanekey)
Babaei, Masoud (Department of Mechanical Engineering, University of Eyvanekey)
Mollaei, Somayeh (Department of Civil Engineering, University of Bonab)
Mohammadi, Mokhtar (Department of Information Technology, College of Engineering and Computer Science, Lebanese French University)
Asemi, Kamran (Department of Mechanical Engineering, Islamic Azad University)
Publication Information
Advances in nano research / v.11, no.4, 2021 , pp. 361-380 More about this Journal
Abstract
Natural frequency analysis of functionally graded porous joined truncated conical-cylindrical shell reinforced by graphene platelet is investigated in this paper. The structure is consisting of a layered model with five kinds of distribution of graphene platelets in a metallic matrix containing open-cell interior pores. To calculate the effective properties of the porous nanocomposite joined shell, the generalized rule of mixture and the modified Halpin-Tsai equations are employed. Four different porosity distributions are assumed along the shell thickness: two kinds of symmetric functionally graded distributions, non-symmetric functionally graded distributions and uniform distribution of porosity. Graded finite element method (GFEM) based on Rayleigh-Ritz energy formulation has been used to solve 2D- axisymmetric elasticity equations. A parametric study is also conducted to show the effects of different geometric parameters, boundary conditions, weight fraction of graphene platelets, porosity coefficient, distribution of porosity and dispersion pattern of graphene platelets on the natural frequencies and mode shapes of the structure.
Keywords
FG porous; graded finite element method; graphene platelets; joined truncated conical-cylindrical shell; natural frequency analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Khadimallah, M.A., Hussain, M., Khedher, K.M., Bouzgarrou, S.M., Al Naim, A.F., Naeem, M.N. and Tounsi, A. (2020), "Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model", Adv. Nano Res., 9(4), 251-261. http://doi.org/10.12989/anr.2020.9.4.251   DOI
2 Khosravi, F., Simyari, M., Hosseini, S.A. and Tounsi, A. (2020), "Size dependent axial free and forced vibration of carbon nanotube via different rod models", Adv. Nano Res., 9(3), 157-172. http://doi.org/10.12989/anr.2020.9.3.157.   DOI
3 Lefebvre, L.P., Banhart, J. and Dunand, D.C. (2008), "Porous metals and metallic foams: current status and recent developments", Adv. Eng. Mater., 10(9), 775-787. https://doi.org/10.1002/adem.200800241.   DOI
4 Leissa, A.W. (1993), Vibration of Shells, American Institute of Physics, New York, U.S.A.
5 Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J. and Lee, W.R. (2015), "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites", J. Ind. Eng. Chem., 21, 11-25. https://doi.org/10.1016/j.jiec.2014.03.022.   DOI
6 Nematollahi, M.S., Mohammadi, H., Dimitri, R. and Tornabene, F. (2020), "Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams", Appl. Sci., 10(16), 5669. https://doi.org/10.3390/app10165669.   DOI
7 Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier, New York, U.S.A.
8 Qu, Y., Chen, Y., Long, X., Hua, H. and Meng, G. (2013), "A variational method for free vibration analysis of joined cylindrical-conical shells", J. Vib. Control, 19(6), 2319-2334. https://doi.org/10.1177/1077546312456227.   DOI
9 Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlinear Dyn., 90, 899-914. https://doi.org/10.1007/s11071-017-3701-0.   DOI
10 Soureshjani, A.H., Talebitooti, R. and Talebitooti, M. (2020a), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aerosp. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559.   DOI
11 Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.   DOI
12 Kang, J.H. (2012), "Three-dimensional vibration analysis of joined thick conical-cylindrical shells of revolution with variable thickness", J. Sound Vib., 331(18), 4187-4198. https://doi.org/10.1016/j.jsv.2012.04.021.   DOI
13 Lee, J. (2018), "Free vibration analysis of joined conical-cylindrical shells by matched Fourier-Chebyshev collocation method", J. Mech. Sci. Technol., 32(10), 4601-4612. https://doi.org/10.1007/s12206-018-0907-0.   DOI
14 Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.   DOI
15 Gibson, L.J., Ashby, M. (1982), "The mechanics of three-dimensional cellular materials", Proc. Math. Phys. Eng. Sci., 382(1782), 43-59. https://doi.org/10.1098/rspa.1982.0088.   DOI
16 Akbas, S.D. (2017c), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.   DOI
17 Ashby, M.F., Evans, T., Fleck, N.A., Hutchinson, J., Wadley, H. and Gibson, L. (2000), Metal foams: A design guide, Elsevier.
18 Babaei, M. and Asemi, K. (2020), "Stress analysis of functionally graded saturated porous rotating thick truncated cone", Mech. Based Des. Struct., 1-28. https://doi.org/10.1080/15397734.2020.1753536.   DOI
19 Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of joined conical-conical shells", Thin Wall. Struct., 120, 446-457. https://doi.org/10.1016/j.tws.2017.06.032.   DOI
20 Bahaadini, R., Saidi, A.R., Arabjamaloei, Z. and Ghanbari-NejadParizi, A. (2019), "Vibration analysis of functionally graded graphene reinforced porous nanocomposite shells", Int. J. Appl. Mech., 11(7)- 1580-1588. doi:10.1142/S1758825119500686.   DOI
21 Choi, J., Lakes, R. (1995), "Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative poisson's ratio", Int. J. Mech. Sci., 37(1), 51-59. https://doi.org/10.1016/0020-7403(94)00047-N.   DOI
22 Wu, S.H., Qu, Y.G., Huang, X. C. and Hua, H. X. (2012), "Free vibration analysis on combined cylindrical-spherical shell", Appl. Mech. Mater., 226, 3-8. https://doi.org/10.4028/www.scientific.net/amm.226-228.3   DOI
23 Thambiratnam, D.P. and Thevendran, V. (1988), "Optimum design of conical shells for free vibration", Comput. Struct., 29(1), 133-140. https://doi.org/10.1016/0045-7949(88)90178-2.   DOI
24 Tjong, S.C. (2013), "Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets", Mater. Sci. Eng. R Rep., 74(10), 281-350. https://doi.org/10.1016/j.mser.2013.08.001.   DOI
25 Wicklein, M. and Thoma, K. (2005), "Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam", Mater. Sci. Eng., 397(1-2), 391-399. https://doi.org/10.4028/www.scientific.net/AMM.226-228.3.   DOI
26 Xiang, J. and Matsumoto, T. (2011), "Vibration analysis of conical shell based on wavelet finite element method", Trans Jascome, 11, 101-106.
27 Hussain, M., Naeem, M. N. and Tounsi, A. (2020b), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. http://doi.org/10.12989/anr.2020.8.3.229.   DOI
28 Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/SCS.2020.35.2.249.   DOI
29 Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.   DOI
30 Smith, B.H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W. and Arwade, S. R. (2012), "Steel foam for structures: A review of applications, manufacturing and material properties", J. Constr. Steel Res, 71, 1-10. https://doi.org/10.1016/j.jcsr.2011.10.028.   DOI
31 Babaei, M., Asemi, K. and Kiarasi, F. (2020), "Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2020.1864401.   DOI
32 Soureshjani, A.H., Talebitooti, R. and Talebitooti M., (2020b), "Thermal effects on the free vibration of joined FG-CNTRC conical-conical shells", Thin Wall. Struct., 156, 106960. https://doi.org/10.1016/j.tws.2020.106960.   DOI
33 Xia, X. C., Chen, X. W., Zhang, Z., Chen, X., Zhao, W. M., Liao, B. and Hur, B. (2013), "Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam", J. Magnes. Alloy, 1(4), 330-335. https://doi.org/10.1016/j.jma.2013.11.006.   DOI
34 Zhao, S., Yang, Z., Kitipornchai, S. and Yang, J. (2020), "Dynamic instability of functionally graded porous arches reinforced by graphene platelets", Thin Wall. Struct., 147, 106491. https://doi.org/10.1016/j.tws.2019.1r06491.   DOI
35 Asgari, M. (2015), "Two dimensional functionally graded material finite thick hollow cylinder axisymmetric vibration mode shapes analysis based on exact elasticity theory", J. Theor. Appl. Mech., 45(2), https://doi.org/3.10.1515/jtam-2015-0008.   DOI
36 Babaei, M., Asemi, K., Safarpour, P. (2019), "Natural frequency and dynamic analyses of functionally graded saturated porous beam resting on viscoelastic foundation based on higher order beam theory", J. Solid Mech., 11(3), 615-634. https://doi: 10.22034/jsm.2019.666691.   DOI
37 Babaei, M., Asemi, K. and Kiarasi, F. (2021) "Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials", Thin Wall. Struct., 164, 107852. https://doi.org/10.1016/j.tws.2021.107852.   DOI
38 Bagheri, H., Kiani, Y. and Eslami, M.R. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mech, 229, 2751-2764. https://doi.org/10.1007/s00707-018-2133-3   DOI
39 Bagheri, H., Kiani, Y., Bagheri, N. and Eslami, M.R. (2020), "Free vibration of joined cylindrical-hemispherical FGM shells", Arch. Appl. Mech., 90, 2185-2199. https://doi.org/10.1007/s00419-020-01715-1.   DOI
40 Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023   DOI
41 Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865.   DOI
42 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.   DOI
43 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.   DOI
44 Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals, Elsevier.
45 Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. http://doi.org/10.12989/sem.2019.71.1.099.   DOI
46 Duarte, I., Ventura, E., Olhero, S. andFerreira, J. M. (2015), "An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes", Carbon, 95, 589-600. https://doi.org/10.1016/j.carbon.2015.08.065.   DOI
47 Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. http://doi.org/10.12989/anr.2020.8.3.215.   DOI
48 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. http://doi.org/10.12989/anr.2015.3.1.029.   DOI
49 Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108(1), 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065.   DOI
50 Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.   DOI
51 Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.   DOI
52 Gia Ninh, D., Tri Minh, V., Van Tuan, N., Chi Hung, N. and Van Phong, D. (2020), "Novel numerical approach for free vibration of nanocomposite joined conical-cylindrical-conical shells", AIAA J., 59(1), 366-378. https://doi.org/10.2514/1.J059518.   DOI
53 Hassani, A., Habibolahzadeh, A. and Bafti, H. (2012), "Production of graded aluminum foams via powder space holder technique", Mater. Des., 40, 510-515. https://doi.org/10.1016/j.matdes.2012.04.024.   DOI
54 Soedel, W. (2004), Vibrations of Shells and Plates, Marcel Dekker, New York, U.S.A. https://doi.org/10.1121/1.1873932.   DOI
55 Shakouri, M. and Kochakzadeh, M.A. (2014), "Free vibration analysis of joined conical shells analytical and experimental study", Thin Wall. Struct., 85(1), 350-358. https://doi.org/10.1016/j.tws.2014.08.022.   DOI
56 Irie T., Yamada G. and Muramoto Y. (1984), "Free vibration of joined conical-cylindrical shells", J. Sound Vib., 95(1), 31-39. https://doi.org/10.1016/0022-460X(84)90256-6.   DOI
57 Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.   DOI
58 Akbas, S.D. (2017b), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.   DOI
59 Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107   DOI
60 Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. http://doi.org/10.12989/was.2018.27.1.059.   DOI
61 Asemi, K., Salehi, M. and Akhlaghi, M. (2014), "Transient thermal stresses in functionally graded thick truncated cones by graded finite element method", Int. J. Press. Vessel, 119, 52-61. https://.doi.org/10.1016/j.ijpvp.2014.03.002.   DOI