Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.4.347

New state-space approach to dynamic analysis of porous FG beam under different boundary conditions  

Tlidji, Youcef (Department of Civil Engineering, University of Tiaret)
Benferhat, Rabia (Department of Civil Engineering, University of Tiaret)
Trinh, Luan Cong (Faculty of Civil Engineering and Applied Mechanics, University of Technical Education Ho Chi Minh City)
Tahar, Hassaine Daouadji (Department of Civil Engineering, University of Tiaret)
Abdelouahed, Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in nano research / v.11, no.4, 2021 , pp. 347-359 More about this Journal
Abstract
This paper investigates dynamic behavior of porous functionally graded beams under various boundary conditions using State-space approach. The material parameters of FG beams change continuously along the thickness direction according to the power-law function (PFGM) or sigmoid function (SFGM). The porous FG beams are assumed to have even and uneven distributions of porosities over the beam cross-section. The classical beam theory, first-order and higher-order shear deformation theories are employed to consider beams of various boundary conditions. Hamilton's principle are employed for derivation of the equations of motion. Fundamental frequencies are calculated numerically for different boundary conditions, gradient index, volume fraction of porosity, distribution shape of porosity, and span-to-depth ratios. The results show that the variation of the distribution shape of porosity has an effect on the fundamental frequencies.
Keywords
dynamic analysis; FG beams; porosity; state-space approach;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Simsek, M., Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024   DOI
2 Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. http://doi.org/10.12989/scs.2020.34.4.615.   DOI
3 Simsek, M. and Yurtcu, H.H. (2012), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.   DOI
4 Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002.   DOI
5 Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014.   DOI
6 Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.   DOI
7 Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
8 Koochi, A. and Goharimanesh, M., (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Reports Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.   DOI
9 Le, N.L., Nguyen, T.P., Vu, H.N., Nguyen, T.T. and Vu, M.D. (2020), "An analytical approach of nonlinear thermomechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation", J. Appl. Comput. Mech., 6(2), 357-372. https://doi.org/10.22055/jacm.2019.29527.1609.   DOI
10 Benferhat, R., Hassaine, D.T. and Rabahi, A. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.   DOI
11 Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. http://doi.org/10.12989/sem.2020.75.3.357.   DOI
12 Mahesh, V., Harursampath, D. (2020), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5.   DOI
13 Li, L., Xiaobai, L., Yujin, H. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010.   DOI
14 Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.   DOI
15 Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Facta Univ. Series Mech. Eng., 18(2), 245 - 254. https://doi.org/10.22190/FUME200129020L.   DOI
16 Zhang, H., Ma, J., Ding, H. and Chen, L. (2017), "Vibration of axially moving beam supported by viscoelastic foundation", Appl. Math. Mech., 38(2), 161-172. https://doi.org/10.1007/s10483-017-2170-9.   DOI
17 Zhu, X., Lu, Z., Wang, Z., Xue, L. and Ebrahimi-Mamaghani, A. (2020), "Vibration of spinning functionally graded nanotubes conveying fluid", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01123-7.   DOI
18 Zohra, Z.F., Lemya, H.H., Abderahman, Y., Mustapha, M., Abdelouahed, T. and Djamel, O. (2017), "Free vibration analysis of functionally graded beams using a higher-order shear deformation theory", Math. Model. Eng. Prob., 4(1)., 7-12. https://doi.org/10.18280/mmep.040102.   DOI
19 Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184(15), 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.   DOI
20 Ghayesh, M.H. (2018a), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dynam., 13(4), 041002. https://doi.org/10.1115/1.4039191.   DOI
21 Benferhat, R., Tahar, H.D. and Rabahi, A. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.   DOI
22 Sedighi, H.M., Daneshmand, F. (2014), "Static and dynamic pullin instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol. 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.   DOI
23 Ghayesh, M.H. (2019c), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. A Solid, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.   DOI
24 Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dynam., 13(2), 021006. https://doi.org/10.1115/1.4037596.   DOI
25 Ghayesh, M.H. (2019a), "Nonlinear oscillations of FG cantilevers", Appl. Acoust., 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014.   DOI
26 Ghayesh, M.H. (2019b), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams" Compos. Struct., 225(1), 110974. https://doi.org/10.1016/j.compstruct.2019.110974.   DOI
27 Ghayesh, M.H. (2019d), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.   DOI
28 Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.   DOI
29 Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. http://doi.org/10.12989/scs.2020.37.5.551.   DOI
30 Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.   DOI
31 Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.   DOI
32 Huang, Y., Li, X.F.A. (2010), "New approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029.   DOI
33 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment" Struct. Eng. Mech., 73(2), 191-207. http://doi.org/10.12989/sem.2020.73.2.191.   DOI
34 Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. http://doi.org/10.12989/scs.2020.35.3.449.   DOI
35 Tran, V.K., Pham, Q.H. and Nguyen-Thoi, T. (2020), "A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations", Eng. Comput., 1-26. https://doi.org/10.1007/s00366-020-01107-7.   DOI
36 Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", Steel Compos. Struct., 34(2), 227-239. http://doi.org/10.12989/scs.2020.34.2.227.   DOI
37 Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J. P. and Tahouneh, V (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-303. http://doi.org/10.12989/scs.2020.35.2.295.   DOI
38 Ould, L.L., Kaci, A., Houari, M.S.A., Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713.   DOI
39 Phung-Van, P. and Thai, C.H. A (2021), "A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon nanotube-reinforced composite nanoplates", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01353-3.   DOI
40 Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B Eng., 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027.   DOI
41 Sayyad, A.S. and Ghugal, Y.M. (2018), "Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams", Asian J. Civil Eng., 19(5), 607-623. https://doi.org/10.1007/s42107-018-0046-z.   DOI
42 Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.   DOI
43 Allahkarami, F. (2020), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01169-7.   DOI
44 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. http://doi.org/10.12989/sem.2020.75.5.633.   DOI
45 Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020b), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading" Adv. Nano Res., 8(1), 49-58 http://doi.org/10.12989/anr.2020.8.1.049.   DOI
46 Sheng, G.G., Wang, X. (2020), "Nonlinear resonance responses of size-dependent functionally graded cylindrical microshells with thermal effect and elastic medium", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01176-8.   DOI
47 Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupled Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.   DOI
48 Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. http://doi.org/10.12989/anr.2020.9.3.193.   DOI
49 Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020a), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.   DOI
50 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. http://doi.org/10.12989/scs.2020.35.1.147.   DOI
51 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.   DOI
52 Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.   DOI
53 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.   DOI
54 Benferhat, R., Hassaine D.T. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupled Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.   DOI
55 Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/jacm.2019.27857.1439.   DOI
56 Benferhat, R., Hassaine, D.T., Said, M.M., and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.   DOI
57 Anwariningsih, S.H. (2013), "Development of interactive media for ict learning at elementary school based on student self learning", J. Educ. Learn, 7(154), 121-128. https://doi.org/10.11591/edulearn.v7i2.226.   DOI
58 Ashraf, M.A., Liu, Z., Zhang, D., Pham, B.T. (2020), "Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01068-x.   DOI
59 Asrari, R., Ebrahimi, F. and Kheirikhah, M. M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells" Adv. Nano Res., 9(1), 33-45. http://doi.org/10.12989/anr.2020.9.1.033.   DOI