Performance of FGM bilayered cylindrical shell placed on cantilever edge |
Ghamkhar, Madiha
(Department of Mathematics and Statistics, University of Agriculture)
Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) Iqbal, Muhammad Zafer (Department of Mathematics and Statistics, University of Agriculture) Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) Yahya, Ahmad (Nuclear Engineering Department, King Abdulaziz University) Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University) Naeem, Muhammad N. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University) |
1 | Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010. DOI |
2 | Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load part II: numerical results", Int. J. Solid Struct., 43(13), 3657-3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010. DOI |
3 | Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-120 https://doi.org/10.1016/0029-5493(81)90020-0. DOI |
4 | Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5. DOI |
5 | Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265. DOI |
6 | Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X. DOI |
7 | Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889. DOI |
8 | Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191(1), 75-91. http/10.1007/s00707-006-0438-0. DOI |
9 | Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412. DOI |
10 | Swaddiwudhipong. S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503. DOI |
11 | Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107(1), 17-28. https://doi.org/10.1016/0022-460X(86)90279-8. DOI |
12 | Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337. DOI |
13 | Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101(4), 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5 DOI |
14 | Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235. |
15 | Arshad, S.H., Naeem, M.N. and Sultana, N. (2007), "Frequency analysis of functionally graded cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221(12), 1483-1495. https://doi.org/10.1243/09544062JMES738. DOI |
16 | Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, London. U.K., 7(24), 101-111. |
17 | Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201. DOI |
18 | Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", Compos. Eng., 4(11), 1153-1167. https://doi.org/10.1016/0961-9526(95)91289-S DOI |
19 | Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring support", Int. J. Mech. Sci., 39(4), 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5. DOI |
20 | Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55(6), 1340-1342. https://doi.org/10.1121/1.1914708. DOI |
21 | Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15(4), 269-278. https://doi.org/10.1016/0020-7403(73)90009-X. DOI |
22 | Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139. DOI |
23 | Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603. DOI |
24 | Zhang, L., Xiang, Y. and Wei, G.W. (2006), "Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions" Int. J. Mech. Sci., 48(10), 1126-1138. https://doi.org/10.1016/j.ijmecsci.2006.05.005. DOI |
25 | Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells With and Without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield, U.S.A. |
26 | Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62(3), 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1. DOI |
27 | Ghosh, A, Miyamoto, Y, Reimanis, I and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Soc., 76, 171-189. |
28 | Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X. DOI |
29 | Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135. DOI |
30 | Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039. DOI |
31 | Farahani, H. and Barati, F. (2015), "Vibration of sumberged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method", Struct. Eng. Mech., 53(3), 575-587. http://doi.org/10.12989/sem.2015.53.3.575. DOI |
32 | Li, S.R., Fu, X.H. and Batra, R.C. (2010), "Free vibration of three-layer circular cylindrical shells with functionally graded middle layer", Mech. Res. Commun., 37(6), 577-580. https://doi.org/10.1016/j.mechrescom.2010.07.006. DOI |
33 | Golpayegani, I.F. and Ghorbani, E. (2016), "Free vibration analysis of FGM cylindrical shells under non-uniform internal pressure", J. Mater. Environ. Sci., 7(3), 981-992. |
34 | Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361. DOI |
35 | Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng. 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9. DOI |
36 | Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", J. Appl. Mech., 31(4), 700-701. https://doi.org/10.1115/1.3629733. DOI |
37 | Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443. DOI |
38 | Moazzez, K., Saeidi Googarchin, H. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing Line-Spring model", Thin Wall Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009. DOI |
39 | Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), 'On the small free vibrations and deformation of thin elastic shell'", Philos. T. R. Soc. A, 179, 491-549. DOI |
40 | Bellman, R. and Casti. J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. DOI |
41 | Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites: Part 2 Thermo mechanical behavior", Int. Mater, 42(3), 85-116. https://doi.org/10.1179/imr.1997.42.3.85. DOI |
42 | Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605. DOI |
43 | Sharma, P., Singh, R., Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234. DOI |
44 | Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059. DOI |
45 | Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Industry, 93(4), 1229-1232. https://doi.org/10.1115/1.3428067. DOI |
![]() |