Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.3.327

Computational modeling for nonlinear magneto-electro-elastic responses of smart multi-phase symmetric system  

Maalla, Allam (School of Engineering, Guangzhou College of Technology and business)
Song, Jun (School of Civil Engineering, Shandong Jiaotong University)
Publication Information
Advances in nano research / v.11, no.3, 2021 , pp. 327-337 More about this Journal
Abstract
This paper investigates impact of thickness stretching phenomenon on the scale-dependent behavior of nano panel in electromagnetic environment in the framework of HOSNDT. Unlike classic theories of shells and plates, the radial displacement is assumed variable along the thickness direction as summation of bending, shear and thickness stretching displacements in which the last term is assumed trigonometrically variable along the thickness direction. Generalized magneto-electro-elastic equations are derived using the virtual work principle. The main novelty of the present paper is application of thickness stretching formulation on the results. The bending results are calculated using analytical method with actuating the nano panel with initial electromagnetic potentials. An extended numerical investigation is presented to examine influence of significant parameters on the static results.
Keywords
electromagnetic potentials; higher-order shear and normal deformation theory; panel; scale-dependent theory; thickness-stretching effect;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Asghar, S., Naeem, M.N., Hussain, M. and Tounsi, A. (2020), "Nonlocal vibration of DWCNTs based on Flugge shell model using wave propagation approach", Steel Compos. Struct., 34(4), 599-613. https://doi.org/10.12989/scs.2020.34.4.599.   DOI
2 Chen, R., Cheng, Y., Wang, P., Wang, Q., Wan, S., Huang, S. and Wang, Y. (2021a). "Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers". Sci. Total Environ., 756, 143871. https://doi.org/10.1016/j.scitotenv.2020.143871.   DOI
3 Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.   DOI
4 Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y. and Wang, J. (2017). "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions". Int. J. Mach. Tool. Manuf., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003.   DOI
5 Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells", Struct. Eng. Mech., 75(6), 659-674. https://doi.org/10.12989/sem.2020.75.6.659.   DOI
6 Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223-244. http://doi.org/10.12989/amr.2016.5.4.223.   DOI
7 Zhang, K., Huo, Q., Zhou, Y., Wang, H., Li, G., Wang, Y. and Wang, Y. (2019), "Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal", ACS Appl. Mater. Interface., 11(19), 17368-17374. https://doi.org/10.1021/acsami.9b01734.   DOI
8 Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distribution", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.   DOI
9 Farrokhi Nia, A., Badnava, S., Hamouda, A.M.S., Mirjavadi, S.S. and Forsat, M. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano. Res., 8(2), 149-156. http://doi.org/10.12989/anr.2020.8.2.149.   DOI
10 Gupta, A., Talha, M. and Seemann, W. (2018), "Free vibration and flexural response of functionally graded plates resting on Winkler-Pasternak elastic foundations using nonpolynomial higher-order shear and normal deformation theory", Mech. Adv. Mater. Struct., 25(6), 523-538. https://doi.org/10.1080/15376494.2017.1285459.   DOI
11 Amabili, M. and Reddy, J.N. (2020), "The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells", Compos. Struct., 244, 112265. https://doi.org/10.1016/j.compstruct.2020.112265.   DOI
12 Arefi, M. and Rahimi, G.H. (2011), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953.   DOI
13 Belarbi, M. Tati, A. and Khechai, A. (2019), "Effect of thickness stretching on the natural frequencies of laminate-faced sandwich plates using a new Layerwise model", J. Build. Mater. Struct. 6, 88-96. https://doi.org/10.5281/zenodo.3352310.   DOI
14 Bodaghi, M. and Shakeri, M. (2012), "An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads", Compos. Struct. 94, 1721-1735. https://doi.org/10.1016/j.compstruct.2012.01.009.   DOI
15 Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B. Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.   DOI
16 Elmascri, S., Bessaim, A., Taleb, O. Houari, M.S.A., Mohamed, S. Bernard, F. and Tounsi, A. (2020), "A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments, Struct. Eng. Mech., 75(2), 193-209, http://doi.org/10.12989/sem.2020.75.2.193.   DOI
17 Feng, S., Zuo, C., Zhang, L., Yin, W. and Chen, Q. (2021). "Generalized framework for non-sinusoidal fringe analysis using deep learning", Photonic Res., 9(6), 1084. https://doi.org/10.1364/PRJ.420944.   DOI
18 Alibeigloo, A. and Liew, K.M. (2014), "Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity", Compos. Struct., 113, 23-30. https://doi.org/10.1016/j.compstruct.2014.03.004.   DOI
19 Hashemi, R., Mirzaei, M. and Adlparvar, M.R. (2021), "On thermally induced instability of FG-CNTRC cylindrical panels", Adv. Nano. Res., 10(1), 43-57. http://doi.org/10.12989/anr.2021.10.1.043.   DOI
20 Amabili, M. (2015), "Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells", Int. J. Non-Linear Mech., 69, 109-128. https://doi.org/10.1016/j.ijnonlinmec.2014.11.026.   DOI
21 Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel. Compos. Struct., 20(3), 513-543. http://doi.org/10.12989/scs.2016.20.3.513.   DOI
22 Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), "On the shell thickness-stretching effects using seven-parameter triangular element", Eur. J. Comput. Mech., 27(2), 163-185. https://doi.org/10.1080/17797179.2018.1484208.   DOI
23 Shariyat, M. and Alipour, M.M. (2017), "Analytical bending and stress analysis of variable thickness FGM auxetic conical/cylindrical shells with general tractions", Lat. Am. J. Solids Struct., 14(5). https://doi.org/10.1590/1679-78253413.   DOI
24 Xu, X. and Nieto-Vesperinas, M. (2019), "Azimuthal imaginary poynting /momentum density", Phys. Rew. Lett., 123(23), 233902. https://doi.org/10.1103/PhysRevLett.123.233902.   DOI
25 Yang, Y., Chen, H., Zou, X., Shi, X., Liu, W., Feng, L. and Chen, Z. (2020). "Flexible carbon-fiber/semimetal bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts", ACS Appl. Mater. Interface., 12(22), 24845-24854. https://doi.org/10.1021/acsami.0c05695.   DOI
26 Zenkour, A.M. (2016), "Hygrothermal analysis of heterogeneous piezoelectric elastic cylinders", Math. Models. Eng., 2(1), 1-17.   DOI
27 Kheroubi, B., Benzair, A., Tounsi, A. and Semmah, A. (2016), "A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams", Adv. Nano. Res., 4(4), 251-264. http://doi.org/10.12989/anr.2016.4.4.251.   DOI
28 Guo, F., Wu, S., Liu, J., Wu, Z., Fu, S. and Ding, S. (2021). "A time-domain stepwise fatigue assessment to bridge small-scale fracture mechanics with large-scale system dynamics for high-speed maglev lightweight bogies". Eng. Fract. Mech., 248, 107711. https://doi.org/10.1016/j.engfracmech.2021.107711.   DOI
29 Gholami, Y., Ansari, R., Gholami, R. and Rouhi, H. (2020), "Nonlinear forced vibration analysis of FG cylindrical nanopanels based on Mindlin's strain gradient theory and 3D elasticity", Int. J. Nonlinear. Sci. Num. Sim., 21(6), 523-537. https://doi.org/10.1515/ijnsns-2018-0333.   DOI
30 Ganapathi, M., Anirudh, B., Anant, C. and Polit, O. (2019), "Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect", Mech. Adv. Mater. Struct., 28(7), 741-752. https://doi.org/10.1080/15376494.2019.1601310.   DOI
31 Atmane, H.A. Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Design., 13, 71-84. https://doi.org/10.1007/s10999-015-9318-x.   DOI
32 Alijani, F. and Amabili, M. (2014a), "Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates", Compos. Struct., 113, 89-107. https://doi.org/10.1016/j.compstruct.2014.03.006.   DOI
33 Alijani, F. and Amabili, M. (2014b), "Non-linear static bending and forced vibrations of rectangular plates retaining non-linearities in rotations and thickness deformation", Int. J. Non-Linear Mech., 67, 394-404. https://doi.org/10.1016/j.ijnronlinmec.2014.10.003.   DOI
34 Amabili, M. (2014), "A non-linear higher-order thickness stretching and shear deformation theory for large-amplitude vibrations of laminated doubly curved shells", Int. J. Non-Linear Mech., 58, 57-75. https://doi.org/10.1016/j.ijnonlinmec.2013.08.006.   DOI
35 Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322. https://doi.org/10.5897/IJPS10.597.   DOI
36 Rivera, M.G., Reddy, J.N. and Amabili, M. (2016), "A new twelve-parameter spectral/hp shell finite element for large deformation analysis of composite shells", Compos. Struct., 151, 183-196. https://doi.org/10.1016/j.compstruct.2016.02.068.   DOI
37 Arefi, M. and Rahimi, G.H. (2012b), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.   DOI
38 Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016a), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech. 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.   DOI
39 Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.   DOI
40 Kabir, H.R.H. and Askar, H. (2005), "Free vibration response of cylindrical panels with higher order shear deformation theory", Int. J. Struct. Stab. Dyn., 5(3), 409-434. https://doi.org/10.1142/S0219455405001660.   DOI
41 Zenkour, A.M. (2018), "Generalized thermoelasticity theories for axisymmetric hollow cylinders under thermal shock with variable thermal conductivity", J. Mole. Eng. Mater., 6(3-4), 1850006. https://doi.org/10.1142/S2251237318500065.   DOI
42 Zenkour, A.M. (2020a), "Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory", J. Therm. Stresses, 43(6), 687-706. https://doi.org/10.1080/01495739.2020.1736966.   DOI
43 Zenkour, A.M. (2020b), "Thermo-diffusion of solid cylinders based upon refined dual-phase-lag models", Multidisc. Model. Mater. Struct., 16(6), 1417-1434. https://doi.org/10.1108/MMMS-12-2019-0213.   DOI
44 Zenkour, A.M. and Kutbi, M.A. (2020), "Thermoelastic interactions in a hollow cylinder due to a continuous heat source without energy dissipation", Mater. Res. Express, 7, 035702. https://doi.org/10.1088/2053-1591/ab7a61.   DOI
45 Zhao, X., Zhu, W. D. and Li, Y.H. (2020a), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound. Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.   DOI
46 Zhao, N., Deng, L., Luo, D. and Zhang, P. (2020b), "One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor", Appl. Surf. Sci., 526, 146696. https://doi.org/10.1016/j.apsusc.2020.146696.   DOI
47 Ni, Z., Cao, X., Wang, X., Zhou, S., Zhang, C., Xu, B. and Ni, Y. (2021), "Facile synthesis of copper(I) oxide nanochains and the photo-thermal conversion performance of its nanofluids", Coatings, 11, 749. https://doi.org/10.3390/coatings11070749.   DOI
48 Arefi, M. and Rahimi, G.H. (2012a), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst. 9(2), 127-143. https://doi.org/10.12989/sss.2011.8.5.433.   DOI
49 Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Com. 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001.   DOI
50 Merzouki, T., Ganapathi, M. and Polit, O. (2019), "A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams", Mech. Adv. Mater. Struct., 26(7), 614-630. https://doi.org/10.1080/15376494.2017.1410903.   DOI
51 Mohamed Ali, J.S., Alsubari, S. and Aminand, Y. (2016), "Hygro-thermoelastic analysis of orthotropic cylindrical shells", Lat. Am. J. Solids Struct., 13, 573-589. https://doi.org/10.1590/1679-78252249.   DOI
52 Arefi, M. and Rahimi, G.H. (2012c), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.   DOI
53 Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427.   DOI
54 Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11, 2073-2092. https://doi.org/10.1590/S1679-78252014001100009.   DOI
55 Arefi, M. and Zenkour, A.M. (2017), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.   DOI
56 Arefi, M. and Zenkour, A.M. (2018a), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29 (7), 1394-1406. https://doi.org/10.1177/1045389X17733333.   DOI
57 Zhuo, Z., Wan, Y., Guan, D., Ni, S., Wang, L., Zhang, Z. and Zhang, B.T. (2020), "A loop-based and AGO-incorporated virtual screening model targeting AGO-mediated miRNA-mRNA interactions for drug discovery to rescue bone phenotype in genetically modified mice", Adv. Sci., 7(13), 1903451. https://doi.org/10.1002/advs.201903451.   DOI
58 Zhang, Y., Li, C., Jia, D., Zhang, D. and Zhang, X. (2015), "Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil", J. Clean. Prod., 87, 930-940. https://doi.org/10.1016/j.jclepro.2014.10.027.   DOI
59 Chen, R., Cheng, Y., Wang, P., Wang, Y., Wang, Q., Yang, Z. and Su, C. (2021b). "Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions", Chem. Eng. J., 421, 129682. https://doi.org/10.1016/j.cej.2021.129682.   DOI
60 Rivera, M.G. Reddy, J.N. and Amabili, M. (2020), "A continuum eight-parameter shell finite element for large deformation analysis", Mech. Adv. Mater. Struct., 27(7), 551-560. https://doi.org/10.1080/15376494.2018.1484531.   DOI
61 Sayyad, A.S. and Ghugal, Y.M. (2018), "Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of laminated composite and sandwich beams", J. Braz. Soc. Mech. Sci. Eng., 40, 296. https://doi.org/10.1007/s40430-018-1222-5.   DOI
62 Sun, J., Aslani, F., Wei, J. and Wang, X. (2021), "Electromagnetic absorption of copper fiber oriented composite using 3D printing", Construct. Build. Mater., 300, 124026. https://doi.org/10.1016/j.conbuildmat.2021.124026.   DOI
63 Tounsi, A., Benguediab, S., Houari, M.S.A. and Semmah, A.W. (2013), "A new nonlocal beam theory with thickness stretching effect for nanobeams", Int. J. Nanosci., 12(4), 1350025. https://doi.org/10.1142/S0219581X13500257.   DOI
64 Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta Mechanica, 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.   DOI
65 Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016b), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.   DOI
66 Arefi, M. and Zenkour, A.M. (2018b), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333.   DOI
67 Li, X., Dong, Z., Yu, P., Wang, L., Niu, X., Yamaguchi, H. and Li, D. (2021), "Effect of self-assembly on fluorescence in magnetic multiphase flows and its application on the novel detection for COVID-19". Phys. Fluid., 33(4). https://doi.org/10.1063/5.0048123.   DOI
68 Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y. and Cheng, H. (2018). "Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage". Nature. Chem., 10(6), 667-672. https://doi.org/10.1038/s41557-018-0045-4.   DOI
69 Talebizadehsardari, P., Eyvazian, A., Musharavati, F., Babaei Mahani, R. and Sebaey, T.A. (2020), "Elastic wave characteristics of graphene reinforced polymer nanocomposite curved beams including thickness stretching effect", Polymers, 12(10), 2194. https://doi.org/10.3390/polym12102194.   DOI
70 Arefi, M. and Rabczuk, T. (2019), "A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell", Compos. B: Eng., 168(1), 496-510. https://doi.org/10.1016/j.compositesb.2019.03.065.   DOI