Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.3.271

Strengthening effect of Ti3C2Tx in copper matrix composites prepared by molecular-level and high-shear mixings and SPS  

Liu, Lu (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University)
Ying, Guobing (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University)
Wen, Dong (Key Laboratory of Superlight Materials & Surface Technology (Harbin Engineering University), Ministry of Education)
Hu, Cong (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University)
Zhang, Chen (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University)
Wang, Cheng (Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University)
Publication Information
Advances in nano research / v.11, no.3, 2021 , pp. 271-280 More about this Journal
Abstract
MXene (Ti3C2Tx) reinforced copper matrix composites with weight fractions of MXene from 1 to 4 wt.% were fabricated based on molecular-level and high-shear mixings and spark plasma sintering (SPS) method. The mechanical properties of the composites with different weight fractions of MXene were studied, and X-ray photoelectron spectroscopy (XPS) was used to track the state of MXene in the composite preparation process. Chemical state and interface transitions would result in an interesting ductile-brittle transition phenomenon of the composite. The Vickers hardness and compressive strength of the composites prepared by the molecular-level mixing and high-shear mixing methods have been improved (the maxima are 44.9% and 41.8%, respectively), where the addition of 1wt.% MXene results in a tensile strength increase of 29.9%. The results show that molecular-level mixing and high-shear mixing methods are hopeful to be applied to produce many kinds of MXene composites.
Keywords
copper-based composites; mechanical properties; molecular-level and high-shear mixings; MXene $Ti_3C_2T_x$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, Y., Ding, L., Liang, Z., Xue, Y., Cui, H. and Tian, J. (2020), "Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2", Chem. Eng. J., 383 123178. https://doi.org/10.1016/j.cej.2019.123178.   DOI
2 Khamaj, A., Farouk, W. M., Shewakh, W. M., Abu-Oqail, A., Wagih, A. and Abu-Okail, M. (2021), "Effect of lattice structure evolution on the thermal and mechanical properties of Cu-Al2O3/GNPs nanocomposites", Ceram. Int., 47(12), 16511- 16520. https://doi.org/10.1016/j.ceramint.2021.02.219.   DOI
3 Aguirre, M.E., Zhou, R., Eugene, A.J., Guzman, M.I. and Grela, M.A. (2017), "Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion", Appl. Catal. B Environ., 217, 485-493. https://doi.org/10.1016/j.apcatb.2017.05.058   DOI
4 Atiemo-Obeng, V.A. and Calabrese, R.V. (2004), Rotor-Stator Mixing Devices in Handbook of Industrial Mixing: Science and Practice, 479-505, John Wiley & Sons, Inc., New Jersey, U.S.A.
5 Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., Heinz, T.F., Hong, S.S., Huang, J. and Ismach, A.F. (2013), "Progress, challenges, and opportunities in twodimensional materials beyond graphene.", ACS Nano, 7(4), 2898-2926. https://doi.org/10.1021/nn400280c.   DOI
6 Cao, M., Wang, F., Lei, W., Wu, W., Lv, W. and Zhu, J. (2017), "Room temperature oxidation of Ti3C2 MXene for supercapacitor electrodes", J. Electrochem. Soc., 164(14), A3933-A3942. https://doi.org/10.1149/2.1541714jes.   DOI
7 Liu, L., Ying, G., Wen, D., Zhang, K., Hu, C., Zheng, Y., Zhang, C., Wang, X. and Wang, C. (2021), "Aqueous solution-processed MXene (Ti3C2Tx) for non-hydrophilic epoxy resin-based composites with enhanced mechanical and physical properties", Mater. Des., 197, 109276. https://doi.org/10.1016/j.matdes.2020.109276.   DOI
8 Wagih, A. (2015), "Mechanical properties of Al-Mg/Al2O3 nanocomposite powder produced by mechanical alloying", Adv. Powder. Technol., 26(1), 253-258. https://doi.org/10.1016/j.apt.2014.10.005.   DOI
9 Wagih, A. and Fathy, A. (2016), "Experimental investigation and FE simulation of nano-indentation on Al-Al2O3 nanocomposites", Adv. Powder. Technol., 27(2), 403-410. https://doi.org/10.1016/j.apt.2016.01.021.   DOI
10 Wang, L., Chen, L., Song, P., Liang, C., Lu, Y., Qiu, H., Zhang, Y., Kong, J. and Gu, J. (2019), "Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application", Compos. Part B Eng., 171, 111-118. https://doi.org/10.1016/j.compositesb.2019.04.050.   DOI
11 Sun, Q., Peng, Y., Chen, H., Chang, K., Qiu, Y. and Lai, S. (2016), "Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays", J. Hazard. Mater., 319, 121-129. https://doi.org/10.1016/j.jhazmat.2016.02.078.   DOI
12 Zhao, H., Lv, J., Sang, J., Zhu, L., Zheng, P., Andrew, G. and Tan, L. (2018), "A facile method to construct MXene/CuO nanocomposite with enhanced catalytic activity of CuO on thermal decomposition of Ammonium Perchlorate", Materials, 11(12), 2457. https://doi.org/10.3390/ma11122457.   DOI
13 Deysher, G., Shuck, C.E., Hantanasirisakul, K., Frey, N.C., Foucher, A.C., Maleski, K., Sarycheva, A., Shenoy, V.B., Stach, E.A. and Anasori, B. (2019), "Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals", ACS Nano, 14(1), 204-217. https://doi.org/10.1021/acsnano.9b07708.   DOI
14 Wang, L., Cui, Y., Li, B., Yang, S., Li, R., Liu, Z., Vajtai, R. and Fei, W. (2015a), "High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing", RSC Adv., 5(63), 51193-51200. https://doi.org/10.1039/C5RA04782J.   DOI
15 Zhang, D. and Zhan, Z. (2016a), "Experimental investigation of interfaces in graphene materials/copper composites from a new perspective", RSC Adv., 6(57), 52219-52226. https://doi.org/10.1039/C6RA07606H.   DOI
16 Carey, M.S., Sokol, M., Palmese, G.R. and Barsoum, M.W. (2019), "Water transport and thermomechanical properties of Ti3C2Tz MXene epoxy nanocomposites", ACS Appl. Mater. Interfac., 11(42), 39143-39149. https://doi.org/10.1021/acsami.9b11448.   DOI
17 Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2011), "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., 23(37), 4248-4253. https://doi.org/10.1002/adma.201102306.   DOI
18 Sadoun, A.M., Fathy, A., Abu-Oqail, A., Elmetwaly, H.T. and Wagih, A. (2020), "Structural, mechanical and tribological properties of Cu-ZrO2/GNPs hybrid nanocomposites", Ceram. Int., 46(6), 7586-7594. https://doi.org/10.1016/j.ceramint.2019.11.258.   DOI
19 Zhang, K., Ying, G., Liu, L., Wu, D., Wang, X. and Zhou, Y. (2019), "Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electrochemical performance for supercapacitors", Materials, 12(1), 188. https://doi.org/10.3390/ma12010188.   DOI
20 Zhao, C. and Wang, J. (2014), "Fabrication and tensile properties of graphene/copper composites prepared by electroless plating for structrual applications", Physica Status Solidi (a), 211(12), 2878-2885. https://doi.org/10.1002/pssa.201431478.   DOI
21 Zhang, D. and Zhan, Z. (2016b), "Strengthening effect of graphene derivatives in copper matrix composites", J. Alloy. Compd., 654, 226-233. https://doi.org/10.1016/j.jallcom.2015.09.013.   DOI
22 Eom, W., Shin, H., Ambade, R.B., Lee, S.H., Lee, K.H., Kang, D.J. and Han, T.H. (2020), "Large-scale wet-spinning of highly electroconductive MXene fibers", Nature Commun., 11(1), 2825. https://doi.org/10.1038/s41467-020-16671-1.   DOI
23 Feng, W., Luo, H., Wang, Y., Zeng, S., Tan, Y., Deng, L., Zhou, X., Zhang, H. and Peng, S. (2019), "MXenes derived laminated and magnetic composites with excellent microwave absorbing performance", Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-40336-9.   DOI
24 Shah, S.A., Habib, T., Gao, H., Gao, P., Sun, W., Green, M.J. and Radovic, M. (2016), "Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces", Chem Commun, 53(2), 400-403. https://doi.org/10.1039/C6CC07733A.   DOI
25 Halim, J., Persson, I., Eklund, P., Persson, P.O. and Rosen, J. (2018), "Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film", RSC Adv., 8(64), 36785-36790. https://doi.org/10.1039/C8RA07270A.   DOI
26 Eltaher, M.A., Wagih, A., Melaibari, A., Fathy, A. and Lubineau, G. (2020), "Effect of Al2O3 particles on mechanical and tribological properties of Al-Mg dual-matrix nanocomposites", Ceram. Int., 46(5), 5779-5787. https://doi.org/10.1016/j.ceramint.2019.11.028.   DOI
27 Fehling, H. (1849), "The quantitative determination of sugar and starch by means of copper sulfate", Annalen der Chemie und Pharmacie, 72(1), 106-113. https://doi.org/10.1002/jlac.18490720112.   DOI
28 Halim, J., Lukatskaya, M.R., Cook, K.M., Lu, J., Smith, C.R., Naslund, L., May, S.J., Hultman, L., Gogotsi, Y. and Eklund, P. (2014), "Transparent conductive two-dimensional titanium carbide epitaxial thin films", Chem. Mater., 26(7), 2374-2381. https://doi.org/10.1021/cm500641a.   DOI
29 Cha, S.I., Kim, K.T., Arshad, S.N., Mo, C.B. and Hong, S.H. (2005), "Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing", Adv. Mater., 17(11), 1377-1381. https://doi.org/10.1002/adma.200401933.   DOI
30 Si, X., Chen, F., Deng, Q., Du, S., Huang, Q. (2018), "Preparation and property of MXene/copper alloy composites", J. Inorg. Mater., 33(6), 603-608. https://doi.org/10.15541/jim20170297.   DOI
31 Liu, L., Ying, G., Hu, C., Zhang, K., Ma, F., Su, L., Zhang, C. and Wang, C. (2019), "Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites", ACS Appl. Nano Mater., 2(9), 5553-5562. https://doi.org/10.1021/acsanm.9b01127.   DOI
32 Ying, G., Dillon, A.D., Fafarman, A.T. and Barsoum, M.W. (2017), "Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films", Mater. Res. Lett., 5(6), 391-398. https://doi.org/10.1080/21663831.2017.1296043.   DOI
33 Cao, Y., Deng, Q., Liu, Z., Shen, D., Wang, T., Huang, Q., Du, S., Jiang, N., Lin, C. and Yu, J. (2017), "Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene", RSC Adv., 7(33), 20494-20501. https://doi.org/10.1039/C7RA00184C   DOI
34 Naguib, M., Mashtalir, O., Lukatskaya, M.R., Dyatkin, B., Zhang, C., Presser, V., Gogotsi, Y. and Barsoum, M.W. (2014), "One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes", Chem. Commun., 50(56), 7420-7423. https://doi.org/10.1039/C4CC01646G.   DOI
35 Xu, Y., Liang, D., Liu, M. and Liu, D. (2008), "Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue", Mater. Res. BULL., 43(12), 3474-3482. https://doi.org/10.1016/j.materresbull.2008.01.026.   DOI
36 Kim, W.J., Lee, T.J. and Han, S. (2014), "Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties", Carbon, 69, 55-65. https://doi.org/10.1016/j.carbon.2013.11.058.   DOI
37 Kim, B., Taylor, L., Troy, A., McArthur, M. and Ptaszynska, M. (2018), "The effects of Graphene Oxide flakes on the mechanical properties of cement mortar", Adv. Nano Res., 21(3), 261-267. http://doi.org/10.12989/cac.2018.21.3.261.   DOI
38 Kobayashi, Y., Nakazawa, H., Maeda, T., Yasuda, Y. and Morita, T. (2017), "Synthesis of metallic copper nanoparticles and metal-metal bonding process using them", Adv. Nano Res., 5(4), 359-372. http://doi.org/10.12989/anr.2017.5.4.359.   DOI
39 Li, M., Che, H., Liu, X., Liang, S. and Xie, H. (2014), "Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles", J. Mater. Sci., 49(10), 3725-3731. https://doi.org/10.1007/s10853-014-8082-x.   DOI
40 Lide, D.R. (2000), CRC Handbook of Chemistry and Physics, CRC Press, Florida, U.S.A.
41 Cui, Y., Wang, L., Li, B., Cao, G. and Fei, W. (2014), "Effect of ball milling on the defeat of few-layer graphene and properties of copper matrix composites", Acta Metallurgica Sinica, 27(5), 937-943. https://doi.org/10.1007/s40195-014-0156-x.   DOI
42 Wagih, A., Fathy, A., Ibrahim, D., Elkady, O. and Hassan, M. (2018), "Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation", J. Alloy. Compd., 752, 137-147. https://doi.org/10.1016/j.jallcom.2018.04.167.   DOI
43 Wang, L., Cui, Y., Yang, S., Li, B., Liu, Y., Dong, P., Bellah, J., Fan, G., Vajtai, R. and Fei, W. (2015b), "Microstructure and properties of carbon nanosheet/copper composites processed by particle-assisted shear exfoliation", RSC Adv., 5(25), 19321-19328. https://doi.org/10.1039/C4RA14255A.   DOI
44 Yu, X., Michael, N., Mochalin, V.N., Barsoum, M.W., Yury, G., Xiqian, Y., Kyung-Wan, N., Xiao-Qing, Y., Kolesnikov, A.I. and Kent, P.R.C. (2014), "Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides", J. Am. Chem. Soc., 136(17), 6385-6394. https://doi.org/10.1021/ja501520b.   DOI
45 Zhang, H., Wang, L., Zhou, A., Shen, C., Dai, Y., Liu, F., Chen, J., Li, P. and Hu, Q. (2016), "Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites", RSC Adv., 6(90), 87341-87352. https://doi.org/10.1039/C6RA14560D.   DOI
46 Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y. and Barsoum, M.W. (2012), "Two-dimensional transition metal carbides", ACS Nano, 6(2), 1322-1331. https://doi.org/10.1021/nn204153h.   DOI
47 Shen, C., Wang, L., Zhou, A., Wang, B., Wang, X., Lian, W., Hu, Q., Qin, G. and Liu, X. (2018), "Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites", Nanomaterials, 8(2), 80. https://doi.org/10.3390/nano8020080.   DOI
48 Su, L., Ying, G., Liu, L., Ma, F. and Wang, C. (2018), "Ti3C2Tx on copper and nickel foams with improved electrochemical performance produced via solution processing for supercapacitor", Process. Appl. Ceram., 12(4), 366-373. https://doi.org/10.2298/PAC1804366S.   DOI
49 Liu, M., Wang, H., Zeng, H. and Li, C. (2015), "Silver (I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water-"silver mirror": From stoichiometric to catalytic", Science Advances, 1(2), e1500020. https://doi.org/10.1126/sciadv.1500020.   DOI
50 Hwang, J., Yoon, T., Jin, S.H., Lee, J., Kim, T.S., Hong, S.H. and Jeon, S. (2013), "Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process", Adv. Mater., 25(46), 6724-6729. https://doi.org/10.1002/adma.201302495.   DOI
51 Sadoun, A.M., Najjar, I. and Wagih, A. (2021), "Electrolessplating of Ag nanoparticles on Al2O3 and graphene Nano sheets (GNs) for improved wettability and properties of Al-Al2O3/GNs nanocomposites", Ceram. Int., 47(8), 10855-10865. https://doi.org/10.1016/j.ceramint.2020.12.203.   DOI
52 Low, S. and Shon Y. (2018), "Molecular interactions between preformed metal nanoparticles and graphene families", Adv. Nano Res., 6(4), 357-375. http://doi.org/10.12989/anr.2018.6.4.357.   DOI