Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.3.227

Synthesis, characterization, and antimicrobial activities of 3-HPAA-Alg-Chi nanoparticles  

Ozdemir, Ozgun O. (Department of Molecular Biology and Genetics, Izmir Institute of Technology)
Soyer, Ferda (Department of Molecular Biology and Genetics, Izmir Institute of Technology)
Publication Information
Advances in nano research / v.11, no.3, 2021 , pp. 227-237 More about this Journal
Abstract
Encapsulation of bioactive compounds (e.g., phenolic acids) into nanoparticles is a well-received technique in the searching for new antimicrobial agents against multidrug-resistant pathogens. Encapsulation can be a good technique to maintain the stability of phenolic acids against environmental conditions. In this study, 3-hydroxyphenylacetic acid (3-HPAA) was encapsulated into alginate-chitosan nanoparticles with the ion gelation technique. The characterization of loaded and unloaded nanoparticles was performed via dynamic light scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy. According to the results, 3-HPAA loaded nanoparticles have spherical shapes with a diameter range of 40-80 nm and an average hydrodynamic diameter of 361.0 ± 69.8 nm. The loading of 3-HPAA was successfully achieved based on the Fourier transform infrared spectra and encapsulation percentage studies. The antimicrobial effect of the nanoparticles in solution forms was tested on P. aeruginosa, S. epidermidis, MRSA, and MSSA. The results demonstrated that the 3-HPAA loaded alginate chitosan nanoparticle solution showed elevated antimicrobial effect due to the pH change by treatment with 1% acetic acid, and it displayed bacteriocidal effects in a strain-specific and dose-dependent manner. Therefore, the 3-HPAA loaded alginate chitosan nanoparticle solution was produced successfully with the bacteriocidal effect against serious pathogenic bacteria.
Keywords
FT-IR; alginate-chitosan nanoparticles; antimicrobial; pathogenic bacteria; phenolic acid; pseudomonas aeruginosa; staphylococci; 3-Hydroxyphenylacetic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Deka, C., Deka, D., Bora, M.M., Jha, D.K. and Kakati, D.K., (2016), "Synthesis of peppermint oil-loaded chitosan/alginate polyelectrolyte complexes and study of their antibacterial activity", J. Drug Deliv. Sci. Tech., 35, 314-322. https://doi.org/10.1016/j.jddst.2016.08.007.   DOI
2 Madureira, A.R., Pereira, A., Castro, P.M. and Pintado, M. (2015), "Production of antimicrobial chitosan nanoparticles against food pathogens", J. Food Eng., 167, 210-216. https://doi.org/10.1016/j.jfoodeng.2015.06.010.   DOI
3 Qi, L., Xu, Z., Jiang, X., Hu, C. and Zou, X. (2004), "Preparation and antibacterial activity of chitosan nanoparticles", Carbohyd. Res., 339(16), 2693-2700. https://doi.org/10.1016/j.carres.2004.09.007.   DOI
4 Supraja, N., Avinash B. and Prasad, T.N.V.K.V. (2017), "Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation", Adv. Nano Res., 5(4), 373-392. http://doi.org/10.12989/anr.2017.5.4.373.   DOI
5 Barrera-Necha, L.L., Correa-Pacheco, Z.N., Bautista-Banos, S., Hernandez-Lopez, M., Jimenez, J.E.M. and Mejia, A.F.M. (2018), "Synthesis and characterization of chitosan nano-particles loaded botanical extracts with antifungal activity on Colletotrichum gloeosporioides and Alternaria species", Adv. Microbiol., 8(4), 286-296. https://doi.org/10.4236/aim.2018.84019.   DOI
6 Cueva, C., Moreno-Arribas, M.V., Martin-A' lvarez, P.J., Bills, G., Vicente, M.F., Basilio, A., Rivas, C. L., Requena, T., Rodriguez, J.M. and Bartolome', B. (2010), "Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria", Res. Microbiol., 161(5), 372-382. https://doi.org/10.1016/j.resmic.2010.04.006.   DOI
7 Gutierrez-Larrainzar, M., Rua, J., Caro, I., de Castro, C., de Arriaga, D., Garcia-Armesto, M.R. and del Valle, P. (2012), "Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria", Food Control, 26(2), 555-563. https://doi.org/10.1016/j.foodcont.2012.02.025.   DOI
8 Longuinho, M.M., Leitao, S.G., Silva, R.S.F., Silva, P.E.A., Rossi, A.L. and Finotelli, P.V. (2019), "Lapazine loaded Alginate/Chitosan microparticles: Enhancement of anti-mycobacterium activity", J. Drug Deliv. Sci. Tech., 54, 101292. https://doi.org/10.1016/j.jddst.2019.101292.   DOI
9 Liu, J., Xiao, J., Li, F., Shi, F., Li, D. and Huang, Q. (2018), "Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: Preparation, characterization and antimicrobial activity", Food Control, 91, 302-310. ttps://doi.org/10.1016/j.foodcont.2018.04.020.   DOI
10 Krausz, A.E., Adler, B.L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R.A., Chandra, D., Liang, H., Gunther, L., Clendaniel, A., Harper, S., Friedman, J.M., Nosanchuk, J.D. and Friedman, A.J. (2015), "Curcumin encapsulated nanoparticles as innovative antimicrobial and wound healing agent", Nanomed. Nanotechnol. Biol. Med. 11(1), 195-206. https://doi.org/10.1016/j.nano.2014.09.004.   DOI
11 Azevedo, M.A., Bourbon, A.I., Vicente, A.A. and Cerqueira, M.A. (2014), "Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2", Int. J. Biol. Macromol., 71, 141-146. https://doi.org/10.1016/j.ijbiomac.2014.05.036.   DOI
12 Wu, T., Li, Y., Shen, N., Yuan, C. and Hu, Y. (2018), "Preparation and characterization of calcium alginate-chitosan complexes loaded with lysozyme", J. Food Eng., 233, 109-116. https://doi.org/10.1016/j.jfoodeng.2018.03.020.   DOI
13 Kaur, J., Kour, A., Panda, J.J., Harjai, K. and Chhibber, S. (2020), "Exploring endolysin-loaded alginate-chitosan nanoparticles as future remedy for Staphylococcal Infections", AAPS Pharm. Sci. Tech., 21(6), 1-15. https://doi.org/10.1208/s12249-020-01763-4.   DOI
14 Diaz-Gomez, R., Lopez-Solis, R., Obreque-Slier, E. and Toledo-Araya, H. (2013), "Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori", LWT Food Sci. Technol., 54(2), 331-335. https://doi.org/10.1016/j.lwt.2013.07.012.   DOI
15 Jamil, B., Habib, H., Abbasi, S., Nasir, H., Rahman, A., Rehman, A., Bokhari, H. and Imran, M. (2015), "Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens", Carbohyd. Polym., 136, 682-691.   DOI
16 Ji, M., Sun, X., Guo, X., Zhu, W., Wu, J., Chen, L., Wang, J., Chen, M., Cheng, C. and Zhang, Q. (2019), "Green synthesis, characterization and in vitro release of cinnamaldehyde/sodium alginate/chitosan nanoparticles", Food Hydrocolloid, 90, 515-522. https://doi.org/10.1016/j.foodhyd.2018.12.027.   DOI
17 Li, Z., Jiang, H., Xu, C. and Gu, L. (2015), "A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals", Food Hydrocolloid, 43, 153-164. https://doi.org/10.1016/j.foodhyd.2014.05.010.   DOI
18 Mladenovska, K., Cruaud, O., Richomme P., Belamie, E., Raicki, R.S., Venier-Julienne, M.C., Popovski, E., Benoit, J.P. and Goracinova, K. (2007), "5-ASA loaded chitosan-Ca-alginate microparticles: Preparation and physicochemical characterization", Int. J. Pharm., 345(1-2), 59-69. https://doi.org/10.1016/j.ijpharm.2007.05.059.   DOI
19 Hurtado-Fernandez, E., Gomez-Romero, M., Carrasco-Pancorbo, A. and Fernandez-Gutierrez, A. (2010), "Application and potential of capillary electro separation methods to determine antioxidant phenolic compounds from plant food material", J. Pharmaceut. Biomed., 53(5), 1130-1160. https://doi.org/10.1016/j.jpba.2010.07.028.   DOI
20 MubarakAli, D., LewisOscar, F., Gopinath, V., Alharbi, N.S., Alharbi, S.A. and Thajuddin, N. (2018), "An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants", Microb. Pathogenesis, 114, 323-327. https://doi.org/10.1016/j.micpath.2017.11.043.   DOI
21 Jamil, B., Abbasi R., Abbasi S., Imran, M., Khan, S.U., Ihsan, A., Javed, S., Bokhari, H. and Imran M. (2016), "Encapsulation of cardamom essential oil in chitosan nano-composites: In-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies", Front. Microbiol., 7, 1580. https://doi.org/10.3389/fmicb.2016.01580.   DOI
22 Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V. and Tamura H. (2010), "Biomedical applications of chitin and chitosan based nanomaterials-A short review", Carbohyd. Polym., 82(2), 227-232. https://doi.org/10.1016/j.carbpol.2010.04.074.   DOI
23 Karaosmanoglu, H., Soyer, F., Ozen, B. and Tokatli, F. (2010), "Antimicrobial and antioxidant activities of Turkish extra virgin olive oils", J. Agr. Food Chem., 58(14), 8238-8245. https://doi.org/10.1021/jf1012105.   DOI
24 Yang, J.S., Xie, Y.J. and He, W. (2011), "Research progress on chemical modification of alginate: A review", Carbohyd. Polym., 84(1), 33-39. https://doi.org/10.1016/j.carbpol.2010.11.048.   DOI
25 Supraja, N., Dhivya, J., Prasad T.N.V.K.V. and David E. (2018), "Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against Breast Cancer Cells (MCF 7) cell line", Adv. Nano Res., 6(2), 183-200. http://doi.org/10.12989/anr.2018.6.2.183.   DOI
26 Mohammadi, A., Hashemi, M. and Hosseini, S.M. (2016), "Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria", LWT Food Sci. Technol., 71, 347-355. https://doi.org/10.1016/j.lwt.2016.04.010   DOI
27 Moschona, A. and Liakopoulou-Kyriakides, M. (2018), "Encapsulation of biological active phenolic compounds extracted from wine wastes in alginate-chitosan microbeads", J. Microencapsul., 35(3), 229-240. https://doi.org/10.1080/02652048.2018.1462415.   DOI
28 Paques, J.P., van der Linden, E., van Rijn, C.J.M. and Sagis, L.M.C. (2014), "Preparation methods of alginate nanoparticles", Adv. Colloid Interfac., 209, 163-171. https://doi.org/10.1016/j.cis.2014.03.009.   DOI
29 Nalini, T., Basha, S.K., Sadiq, A.M.M., Kumari, V.S. and Kaviyarasu, K. (2019), "Development and characterization of alginate/chitosan nanoparticulate system for hydrophobic drug encapsulation", J. Drug Deliv. Sci. Tech., 52, 65-72. https://doi.org/10.1016/j.jddst.2019.04.002.   DOI
30 Scolari, I.R., Paez, P.L., Musri, M.M., Petiti, J.P., Torres, A. and Granero, G.E. (2020), "Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus", Drug Deliv. Translat. Res., 10, 1403-1417. https://doi.org/10.1007/s13346-019-00705-3.   DOI
31 Tang, D.W., Yu, S.H., Ho, Y.C., Huang, B.Q., Tsai, G.J., Hsie, H.Y., Sung, H.W. and Mi, F.L. (2013), "Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide", Food Hydrocolloid, 30(1), 33-41. https://doi.org/10.1016/j.foodhyd.2012.04.014.   DOI
32 Vizhi, D.K., Supraja, N., Devipriya, A., Tollamadugu, N.V.K.V.P and Babujanarthanam, R. (2016), "Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7)", Adv. Nano Res., 4(2), 129-143. http://doi.org/10.12989/anr.2016.4.2.129.   DOI
33 Khan, F., Manivasagan, P., Pham, D.T.N., Oh, J., Kim, S.K. and Kim, Y.M. (2019), "Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa", Microbial Pathogenesis, 128, 363-373. https://doi.org/10.1016/j.micpath.2019.01.033.   DOI
34 Budnyak, T.M., Yanovska, E.S., Kichkiruk, O.Yu., Sternik, D. and Tertykh V.A. (2016), "Natural minerals coated by biopolymer chitosan: Synthesis, physicochemical, and adsorption properties", Nanosc. Res. Lett., 11(1), 1-12. http://doi.org/10.1186/s11671-016-1752-7.   DOI