Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.2.173

Molecular dynamics investigation of pull-in instability in graphene sheet under electrostatic and van der Waals forces  

Sha'bani, Farzin (Department of Mechanical Engineering, Urmia University)
Rash-Ahmadi, Samrand (Department of Mechanical Engineering, Urmia University)
Publication Information
Advances in nano research / v.11, no.2, 2021 , pp. 173-181 More about this Journal
Abstract
This paper investigates the pull-in instability of graphene sheets. The influence of geometry parameters such as chirality of graphene and length to gap ratio is studied using molecular dynamics (MD). For molecular interactions, the AIREBO potential is used. Furthermore, by applying the electrostatic and van der Waals (vdW) forces, pull-in voltages are calculated. Size effect is estimated, with adding the fringing field effect correction factor to the electrostatic force. In MD simulations, the graphene sheets on the armchair and zigzag structure have been investigated. The results show that the closer the moving electrode to the fixed electrode, the greater the effect of van der Waals force than the electrostatic force. The results also represent that the vdW force and fringing effect on the electrostatic load increases the pull-in deflection and decrease the pull-in voltage. The numerical results of the present study show good agreement with previous analytical and experimental researches.
Keywords
electrostatic force; graphene sheet; molecular dynamics; pull-in instability; van der Waals force;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Maugis, D. (2000), Contact, Adhesion, and Rupture of Elastic Solids, Springer-Verlag, Berlin, Germany.
2 Ke, C.H., Pugno, N., Peng, B. and Espinosa, H.D. (2005), "Experiments and modeling of carbon nanotube-based NEMS devices", J. Mech. Phys. Solids., 53(6), 1314-1333. https://doi.org/10.1016/j.jmps.2005.01.007.   DOI
3 Leite, F.L., Bueno, C.C., Da-Roz, A.L., Ziemath, E.C. and Oliveira, O.N. (2012), "Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy", Int. J. Mol. Sci., 13(10), 12773-12856. https://doi.org/10.3390/ijms131012773.   DOI
4 Lin, M., Lee, S. and Chen, C. (2019), "Nonlocal effect on the pullin instability analysis of graphene sheet nano-beam actuator", J. Mech., 35(5), 767-778. https://doi.org/10.1017/jmech.2018.41.   DOI
5 Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys. 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039.   DOI
6 Lu, P., Lee, H.P., Lu, C. and Zhang P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034.   DOI
7 Lin, W.H. and Zhao, Y.P. (2003), "Dynamic behavior of nanoscale electrostatic actuators", Chinese. Phys. Lett., 20, 2070-2073. https://doi.org/10.1088/0256-307X/20/11/049.   DOI
8 Nazemnezhad, R., Zare, M., Hosseini-Hashemi, S. and Shokrollahi, H. (2016), "Molecular dynamics simulation for interlayer interactions of graphene nanoribbons with multiple layers", Superlattice Microst., 98, 228-234. https://doi.org/10.1016/j.spmi.2016.08.036.   DOI
9 Ramezani, A., Alasty, A. and Akbari, J. (2007), "Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces", Int. J. Solids Struct., 44(14), 4925-4941. https://doi.org/10.1016/j.ijsolstr.2006.12.015.   DOI
10 Lv, J., Bai, M. and Cui, W. (2011), "The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system", Nanosc. Res. Lett., 6(1), 1-8. https://doi.org/10.1186/1556-276X-6-200.   DOI
11 Rokni, H. and Lu, W. (2013), "A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects", J. Appl. Phys., 113(15), 153512. https://doi.org/10.1063/1.4800543.   DOI
12 Kuang, J.H. and Chen, C.J. (2005), "Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators", Math. Comput. Model., 41, 1479-1491. https://doi.org/10.1016/j.mcm.2005.06.001.   DOI
13 Mousavi, T., Bornassi, S. and Haddadpour H. (2013), "The effect of small scale on the pull-in instability of nano-switches using DQM", Int. J. Solids. Struct., 50(9), 1193-1202. https://doi.org/10.1016/j.ijsolstr.2012.11.024.   DOI
14 Sutrakar, V.K., Subramanya, N. and Mahapatra, D.R. (2015), "Crack growth prediction and cohesive zone modeling of single crystal aluminum: A molecular dynamics study", Adv. Nano Res., 3(3), 143-168. http://doi.org/10.12989/anr.2015.3.3.143.   DOI
15 Rotkin, S.V. (2002), "Analytical calculations for nanoscale electromechanical systems", Electrochem. Soc. Proc., 6, 90-97.
16 Batra, R.C., Porfiri, M. and Spinello, D. (2006), "Capacitance estimate for electrostatically actuated narrow microbeams", Micro Nano Lett., 1(2), 71-73. https://doi.org/10.1049/mnl:20065046.   DOI
17 Abdi, J., Koochi, A., Kazemi, A. and Abadyan, M. (2011), "Modeling the effects of sizedependence and dispersionforces on the pull-in instability of electrostatic cantilever NEMS using modified couple stress theory", Smart Mater. Struct., 20(5), 055011.   DOI
18 Farazinand, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: A molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. http://doi.org/10.12989/anr.2020.9.2.083.   DOI
19 Fakhrabadi, M.M.S., Khorasani, P.K., Rastgoo, A. and Ahmadian, M.T. (2013), "Molecular dynamics simulation of pull-In phenomena in carbon nanotubes with stone-wales defects", Solid State Commun., 157, 38-44. https://doi.org/10.1016/j.ssc.2012.12.016.   DOI
20 Genoese, A., Genoese, A. and Salerno, G. (2020), "In-plane and out-of-plane tensile behavior of single-layer graphene sheets: A new interatomic potential", Acta Mech., 231(7), 2915-2930. https://doi.org/10.1007/s00707-020-02680-0.   DOI
21 Ansari, R., Ajori, S. and Hassani, R. (2016), "A molecular dynamics investigation into the size-dependent buckling behavior of a novel three-dimensional metallic carbon nanostructure", Superlattice Microst., 97, 125-131. https://doi.org/10.1016/j.spmi.2016.06.012.   DOI
22 Attia, M.A. and Mohamed, S.A. (2019), "Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micronanoswitches", Acta Mech., 230, 1181-1216. https://doi.org/10.1007/s00707-018-2345-6.   DOI
23 Batra, R.C., Porfiri, M. and Spinello, D. (2008), Pull-In Instability in Elecrostatically Actuated MEMS, Imperial College Press, London, U.K.
24 Cheng, J., Zhe, J. and Wu, X. (2003), "Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators", J. Micromech. Microeng., 14(1), 57-68. https://doi.org/10.1088/0960-1317/14/1/308.   DOI
25 Korobeynikov, S.N., Alyokhin, V.V. and Babichev, A.V. (2018), "Simulation of mechanical parameters of graphene using the DREIDING force field", Acta Mechanica., 229(6), 2343-2378. https://doi.org/10.1007/s00707-018-2115-5.   DOI
26 Guo, J.G. and Zhao, Y.P. (2004), "Influence of van der Waals and Casimir forces on electrostatic torsional actuators", J. Microelectromech. S., 13(6), 1027-1035. http://doi.org/10.1109/JMEMS.2004.838390.   DOI
27 Hamaker, H.C. (1937), "The London-van der Waals attraction between spherical particles" Physica, 4(10), 1058-1072. https://doi.org/10.1016/S0031-8914(37)80203-7   DOI
28 Yang, J., Jia, X.L. and Kitipornchai, S. (2008), "Pull-in instability of nano-switches using nonlocal elasticity theory", J. Phys. D Appl. Phys., 41(3), 035103. https://doi.org/10.1088/0022-3727/41/3/035103.   DOI
29 Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. http://doi.org/10.12989/anr.2018.6.2.135.   DOI
30 Gupta, R.K. (1997), "Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems", Ph.D. Dissertation, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, U.S.A.
31 Sedighi, H.M., Daneshmand, F. and Zare, J. (2014), "The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect", Arch. Civil Mech. Eng., 14(4), 766-775. https://doi.org/10.1016/j.acme.2014.01.004.   DOI
32 Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V. and Darabi, MA. (2012), "Surface stress effect on the pull-in instability of hydrostatically and electrostatically actuated rectangular nanoplates with various edge supports", J. Eng. Mater. Technol., 134(4), 041013. https://doi.org/10.1115/1.4007260.   DOI
33 Stuart, S.J., Tutein, A.B. and Harrison, J.A. (2000), "A reactive potential for hydrocarbons with inter-molecular interactions", J. Chem. Phys., 112(14), 6472. https://doi.org/10.1063/1.481208.   DOI
34 Taghavi, N. and Nahvi, H. (2013), "Pull-in instability of cantilever and fixed-fixed nano-switches", Eur. J. Mech. A Soild, 41, 123-133. https://doi.org/10.1016/j.euromechsol.2013.03.003.   DOI
35 Dequesnes, M., Rotkin, S. and Aluru, N. (2002), "Calculation of pull-in voltages for carbonnanotube- based nanoelectromechanical switches", Nanotechnology., 13(1), 120-131. https://doi.org/10.1088/0957-4484/13/1/325.   DOI