Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.2.157

Free vibration analysis of carbon nanotube RC nanobeams with variational approaches  

Madenci, Emrah (Department of Civil Engineering, Necmettin Erbakan University)
Publication Information
Advances in nano research / v.11, no.2, 2021 , pp. 157-171 More about this Journal
Abstract
There is not enough mixed finite element method (MFEM) model developed for dynamic analysis of carbon nanotube reinforced (CNTRC) composite beams in the literature. In the present study, free vibration analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) nanobeams is carried out in the framework of variational formulations. The rule of mixture is employed to estimate the effective material properties of single-walled CNT reinforced nanobeams. Four kinds of CNT distribution of un-axially aligned reinforcement material are investigated in the through-thickness direction of the nanobeams. There are the uniform distribution (UD) and functionally graded distributions FG-O, FG-X and FG-Ʌ of CNTs in the thickness direction of the nanobeams (z axis direction) are assumed here for the analysis. The Hamilton's principle is used to derive governing differential equations based on trigonometric shear deformation beam theory. The effective functional has been constituted for FG-CNTRC nanobeams through a scientific procedure based on the Gâteaux differential. A simple mixed finite element formulation is utilized for the formulation of free vibration problems of FG-CNTRC nanobeams with different boundary conditions. The results of the present method are compared with others from the literature where a good agreement has been found. An effective energy functional and the mixed finite element formulation for FG-CNTRC nanobeams are the original contributions of this study.
Keywords
carbon nanotube; free vibration; functionally graded; high-order theory; mixed finite element method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wu, H., Kitipornchai, S. and Yang, J. (2018b), "Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections", Steel Compos. Struct., 29(3), 319-332. https://doi.org/10.12989/scs.2018.29.3.319.   DOI
2 Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", , Compos. Struct., 71(3-4), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011.   DOI
3 Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.   DOI
4 Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.   DOI
5 Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. http://doi.org/10.12989/anr.2020.9.2.091.   DOI
6 Desai, Y., Ramtekkar, G. and Shah, A. (2003), "Dynamic analysis of laminated composite plates using a layer-wise mixed finite element model", Compos. Struct., 59(2), 237-249. https://doi.org/10.1016/S0263-8223(02)00121-6.   DOI
7 Hussain, M., Naeem, M.N. and Tounsi, A. (2020), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Construct., 9(3), 301-312. https://doi.org/10.12989/acc.2020.9.3.301.   DOI
8 Akoz, A. and Kadioglu, F. (1996), "The mixed finite element solution of circular beam on elastic foundation", Comput. Struct., 60(4), 643-651. https://doi.org/10.1016/0045-7949(95)00418-1.   DOI
9 Ouakad, H.M., Sedighi, H.M. and Al-Qahtani, H.M. (2020), "Forward and backward whirling of a spinning nanotube nanorotor assuming gyroscopic effects", Adv. Nano Res., 8(3), 245-254. http://doi.org/10.12989/anr.2020.8.3.245.   DOI
10 O zutok, A. and Madenci, E. (2013), "Free vibration analysis of cross-ply laminated composite beams by mixed finite element formulation", Int. J. Struct. Stabil. Dynam., 13(2), 1250056. https://doi.org/10.1142/S0219455412500563.   DOI
11 Akoz, Y. and Kadioglu, F. (1999), "The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic timoshenko beams", Int. J. Numer. Meth. Eng., 44(12), 1909-1932.https://doi.org/10.1002/(SICI)1097-0207(19990430)44:12<1909::AID-NME573>3.0.CO;2-P.   DOI
12 Al-Furjan, M., Habibi, M., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020a), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.   DOI
13 Al-Furjan, M., Habibi, M., Ni, J., won Jung, D. and Tounsi, A. (2020b), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x.   DOI
14 Al-Furjan, M., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021a), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using threedimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.   DOI
15 Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695.   DOI
16 Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363(6430), 603-605. https://doi.org/10.1038/363603a0.   DOI
17 Ozutok, A., Madenci, E. and Kadioglu, F. (2014), "Free vibration analysis of angle-ply laminate composite beams by mixed finite element formulation using the Gateaux differential", Sci. Eng. Compos. Mater., 21(2), 257-266. https://doi.org/10.1515/secm-2013-0043.   DOI
18 O zutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.   DOI
19 Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.   DOI
20 Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719.   DOI
21 Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. http://doi.org/10.12989/scs.2017.24.1.065.   DOI
22 Ahmed Houari, M.S., Benyoucef, S., Mechab, I., Tounsi, A. and Adda Bedia, E.A. (2011), "Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates", J. Therm. Stresses, 34(4), 315-334. https://doi.org/10.1080/01495739.2010.550806.   DOI
23 Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021), "Dynamic stability/instability simulation of the rotary sizedependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.   DOI
24 Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117.   DOI
25 Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.   DOI
26 Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. http://doi.org/10.12989/anr.2020.9.3.193.   DOI
27 Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.   DOI
28 Hu, H., Onyebueke, L. and Abatan, A. (2010), "Characterizing and modeling mechanical properties of nanocomposites-review and evaluation", J. Miner. Mater. Charact. Eng., 9(4), 275. https://doi.org/10.4236/jmmce.2010.94022.   DOI
29 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. http://doi.org/10.12989/anr.2019.7.6.431.   DOI
30 Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://dx.doi.org/10.12989/anr.2019.7.5.351.   DOI
31 Kolahdouzan, F., Arani, A.G. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., 26(3), 273-287. https://doi.org/10.12989/scs.2018.26.3.273.   DOI
32 Karama, M., Afaq, K. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.   DOI
33 Khater, H. and Abd el Gawaad, H. (2016), "Characterization of alkali activated geopolymer mortar doped with MWCNT", Construct. Building Mater., 102, 329-337. https://doi.org/10.1016/j.conbuildmat.2015.10.121.   DOI
34 Kim, Y., Kim, D., Choi, H., Yu, S. and Park, K. (2017), "Fatigue performance of deepwater steel catenary riser considering nonlinear soil", Struct. Eng. Mech., 61(6), 737-746. http://doi.org/10.12989/sem.2017.61.6.737.   DOI
35 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. http://doi.org/10.12989/anr.2018.6.1.039.   DOI
36 Akbas, S.D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. http://doi.org/10.12989/sem.2016.59.3.579.   DOI
37 Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.   DOI
38 Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020a), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. http://doi.org/10.12989/cac.2020.25.2.133.   DOI
39 Asghar, S., Naeem, M.N., Khadimallah, M.A., Hussain, M., Iqbal, Z. and Tounsi, A. (2020b), "Effect of chiral structure for free vibration of DWCNTs: Modal analysis", Adv. Concrete Construct., 9(6), 577-588. https://doi.org/10.12989/acc.2020.9.6.577.   DOI
40 Al-Furjan, M., Habibi, M., Shan, L. and Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.   DOI
41 Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904.   DOI
42 Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FGCNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. http://dx.doi.org/10.12989/anr.2019.7.6.405.   DOI
43 Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008.   DOI
44 Merdaci, S., Tounsi, A., Houari, M.S.A., Mechab, I., Hebali, H. and Benyoucef, S. (2011), "Two new refined shear displacement models for functionally graded sandwich plates", Arch. Appl. Mech., 81(11), 1507-1522. https://doi.org/10.1007/s00419-010-0497-5.   DOI
45 Soldatos, K. and Elishakoff, I. (1992), "A transverse shear and normal deformable orthotropic beam theory", J. Sound Vib., 155(3), 528-533. https://doi.org/10.1016/0022-460X(92)90717-C.   DOI
46 Tahouneh, V. (2017), "Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates", Steel Compos. Struct., 23(6), 657-668. https://doi.org/10.12989/scs.2017.23.6.657.   DOI
47 Torabi, J. and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. http://doi.org/10.12989/sem.2018.68.3.313.   DOI
48 Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. http://doi.org/10.12989/anr.2013.1.1.001.   DOI
49 Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. http://doi.org/10.12989/sem.2016.58.3.397.   DOI
50 Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. http://doi.org/10.12989/sem.2016.57.5.837.   DOI
51 Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547.   DOI
52 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
53 Vinyas, M. (2019a), "A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086.   DOI
54 Kumar, P. and Srinivas, J. (2017), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam", Multidiscipline Model. Mater. Struct., 13(4), 590-611. https://doi.org/10.1108/MMMS-05-2017-0032.   DOI
55 Lage, R.G., Soares, C.M., Soares, C.M. and Reddy, J. (2004), "Analysis of adaptive plate structures by mixed layerwise finite elements", Compos. Struct., 66(1), 269-276. https://doi.org/10.1016/j.compstruct.2004.04.048.   DOI
56 Liew, K., Lei, Z. and Zhang, L. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.   DOI
57 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
58 Alibeigloo, A. (2014), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity", Eur. J. Mech. A Solid, 44, 104-115. https://doi.org/10.1016/j.euromechsol.2013.10.002.   DOI
59 Ambartsumian, S. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5(5), 69-77.
60 Arani, A.G., Pourjamshidian, M. and Arefi, M. (2018), "Nonlinear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory", Smart Struct. Sys., 22(1), 105-120. http://doi.org/10.12989/sss.2018.22.1.105.   DOI
61 Arani, A.G., Pourjamshidian, M., Arefi, M. and Arani, M. (2019), "Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory", Struct. Eng. Mech., 69(4), 439-455. http://doi.org/10.12989/sem.2019.69.4.439.   DOI
62 Grover, N., Maiti, D. and Singh, B. (2014), "An efficient C 0 finite element modeling of an inverse hyperbolic shear deformation theory for the flexural and stability analysis of laminated composite and sandwich plates", Finite Elem. Anal. Des., 80, 11-22. https://doi.org/10.1016/j.finel.2013.11.003.   DOI
63 Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.   DOI
64 Carrera, E. (1998), "Mixed layer-wise models for multilayered plates analysis", Compos. Struct., 43(1), 57-70. https://doi.org/10.1016/S0263-8223(98)00097-X.   DOI
65 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.   DOI
66 Vinyas, M. (2020a), "Nonlinear deflection of carbon nanotube reinforced multiphase magneto-electro-elastic plates in thermal environment considering pyrocoupling effects", Math. Method Appl. Sci. https://doi.org/10.1002/mma.6858.   DOI
67 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.   DOI
68 Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020c), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.   DOI
69 Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solids Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X.   DOI
70 Phung-Van, P., Abdel-Wahab, M., Liew, K., Bordas, S. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.   DOI
71 Vinyas, M. (2019b), "Vibration control of skew magneto-electro-elastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046.   DOI
72 Vinyas, M., Sunny, K., Harursampath, D., Nguyen-Thoi, T. and Loja, M. (2019b), "Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates", Compos. Struct., 226, 111254. https://doi.org/10.1016/j.compstruct.2019.111254.   DOI
73 Vinyas, M. and Harursampath, D. (2020), "Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes", Compos. Struct., 253, 112749. https://doi.org/10.1016/j.compstruct.2020.112749.   DOI
74 Vinyas, M. (2020b), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.   DOI
75 Vinyas, M. (2021), "Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading", Mech. Adv. Mater. Struct., 1-27. https://doi.org/10.1080/15376494.2021.1875086.   DOI
76 Vinyas, M. and Dineshkumar, H. (2020), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5.   DOI
77 Vinyas, M., Nischith, G., Loja, M., Ebrahimi, F. and Duc, N. (2019a), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.   DOI
78 Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.   DOI
79 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. http://doi.org/10.12989/anr.2019.7.3.191.   DOI
80 Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.   DOI
81 Mahesh, V. and Harursampath, D. (2020), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2020.1805059.
82 Ebrahimi, F., Nouraei, M., Dabbagh, A. and Civalek, O. (2019), "Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field", Struct. Eng. Mech., 71(4), 351-361. http://doi.org/10.12989/sem.2019.71.4.351.   DOI
83 Bousahla, A.A., Bourada, F., Mahmoud, S., Tounsi, A., Algarni, A., Bedia, E. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.   DOI
84 Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.   DOI
85 Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory" Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.   DOI
86 Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.   DOI
87 Bouazza, M. and Zenkour, A.M. (2020), "Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory", Arch. Appl. Mech., 90, 1755-1769. https://doi.org/10.1007/s00419-020-01694-3.   DOI
88 Di Sciuva, M. and Sorrenti, M. (2019), "Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory", Compos. Struct., 227, 111324. https://doi.org/10.1016/j.compstruct.2019.111324.   DOI
89 Ebrahimi, F. and Rostami, P. (2018), "Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories", Struct. Eng. Mech., 66(4), 495-504. http://doi.org/10.12989/sem.2018.66.4.495.   DOI
90 Mahesh, V. and Harursampath, D. (2021), "Large deflection analysis of functionally graded magneto-electro-elastic porous flat panels", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-01270-x.   DOI
91 Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E., Tounsi, A., Mahmoud, S., Tounsi, A. and Benrahou, K. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.   DOI
92 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
93 Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. http://doi.org/10.12989/anr.2020.9.2.083.   DOI
94 Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E., Mahmoud, S. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213.   DOI
95 Vinyas, M., Harursampath, D. and Thoi, T.N. (2021), "A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element methods", Defence Technology, 17(1), 100-118. https://doi.org/10.1016/j.dt.2020.02.009.   DOI
96 Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube", Int. J. Solids Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014.   DOI
97 Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018a), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. http://dx.doi.org/10.12989/anr.2018.6.2.163.   DOI
98 Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B. Eng., 43(4), 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067.   DOI
99 Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309.   DOI
100 Feng, H., Shen, D. and Tahouneh, V. (2020), "Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers", Steel Compos. Struct., 37(6), 711. https://doi.org/10.12989/scs.2020.37.6.711.   DOI
101 Aribas, U.N., Ermis, M., Eratli, N. and Omurtag, M.H. (2019), "The static and dynamic analyses of warping included composite exact conical helix by mixed FEM", Compos. Part B Eng., 160, 285-297. https://doi.org/10.1016/j.compositesb.2018.10.018.   DOI
102 Arefi, M., Pourjamshidian, M. and Arani, A.G. (2019), "Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory", Steel Compos. Struct., 32(2), 157-171. http://doi.org/10.12989/scs.2019.32.2.151.   DOI
103 Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., 57(3), 441-456. http://doi.org/10.12989/sem.2016.57.3.441.   DOI
104 Gemi, L., Yazman, S., Uludag, M., Dispinar, D. and Tiryakioglu, M. (2017), "The effect of 0.5 wt% additions of carbon nanotubes & ceramic nanoparticles on tensile properties of epoxy-matrix composites: a comparative study", Mater. Sci. Nanotechnol., 1(2), 15-22. http://doi.org/10.35841/nanotechnology.1.2.15-22.   DOI
105 Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012.   DOI
106 Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109. http://doi.org/10.12989/anr.2019.7.2.109.   DOI
107 Oden, J.T. and Reddy, J.N. (1976), "On mixed finite element approximations", SIAM J. Numer. Anal., 13(3), 393-404. https://doi.org/10.1137/0713035.   DOI
108 Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., 27(4), 525-536. http://doi.org/10.12989/scs.2018.27.4.525.   DOI