Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.2.115

Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches  

Forsat, Masoud (Department of Mechanical and Industrial Engineering Qatar University)
Musharavati, Farayi (Department of Mechanical and Industrial Engineering Qatar University)
Eltai, Elsadig (Department of Mechanical and Industrial Engineering Qatar University)
Zain, Azlan Mohd (UTM Big Data Centre, Universiti Teknologi Malaysia)
Mobayen, Saleh (Future Technology Research Center, National Yunlin University of Science and Technology)
Mohamed, Abdeliazim Mustafa (Department of Civil Engineering, College of Engineering, Prince Sattam bin Abdulaziz University)
Publication Information
Advances in nano research / v.11, no.2, 2021 , pp. 115-140 More about this Journal
Abstract
In the current study, vibration characteristics of a three-layered rectangular microplate with Graphene nanoplatelets (GNPs)-reinforced Epoxy core which is fully bonded to piezoelectric-reinforced single-walled Carbon nanotubes (SWCNTs) patches are provided. The face sheets are subjected to the electric field and the microplate is assumed to be in a thermal environment and also, is located on the visco-Pasternak model of the elastic substrate. The GNPs and SWCNTs are dispersed through the core's and face's thickness according to the given functions. To account the shear deformation effect, tangential shear deformation theory (TGSDT) as a higher-order theory is employed and the modified strain gradient theory (MSGT) with tree independent length-scale parameters is selected to capture the size effect. Using the extended form of Hamilton's principle and variational formulation, the governing motion equations are derived and solved mathematically via Navier's scheme for simply supported edges microplate. By ensuring the validity of the results after comparing them in a simpler state with previously published ones, the effects of the most prominent parameters on the results are investigated. It is seen GNPs and CNTs dispersion patterns play an important role in the microplate vibrational behavior, as well as temperature variations. Since the under consideration microstructure can be accounted as smart structures, therefore, the outcomes of this study may help to design and create more efficient engineering structures, such as sensors and actuators and also micro/nano electromechanical systems.
Keywords
carbon nanotubes; graphene nanoplatelets; modified strain gradient theory; sandwich structures; thermal environment; vibration analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194, 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104   DOI
2 Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010   DOI
3 Eyvazian, A., Shahsavari, D. and Karami, B. (2020), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154, 103339. https://doi.org/10.1016/j.ijengsci.2020.103339   DOI
4 Fattahi, A.M., Safaei, B. and Moaddab, E. (2019a), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281   DOI
5 Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019b), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 1-13. https://doi.org/10.1140/epjp/i2019-12912-7   DOI
6 Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C. and Rodrigues, J.D. (2008), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter", Compos. Struct., 86(4), 328-343. https://doi.org/10.1016/J.COMPSTRUCT.2008.07.025   DOI
7 Habibi, M., Taghdir, A. and Safarpour, H. (2019), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B: Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125   DOI
8 Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299   DOI
9 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56. https://doi.org/10.1038/354056a0   DOI
10 Paul, R., Kumbhakar, P. and Mitra, A.K. (2013), "A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite", Adv. Nano Res., 1(2), 71-82. https://doi.org/10.12989/anr.2013.1.2.071   DOI
11 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V. and Firsov, A.A. (2004), "Electric field in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896   DOI
12 Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001   DOI
13 Abazid, M.A. (2019), "The Nonlocal Strain Gradient Theory for Hygrothermo-Electromagnetic Effects on Buckling, Vibration and Wave Propagation in Piezoelectromagnetic Nanoplates", Int. J. Appl. Mech., 11(7), 1950067. https://doi.org/10.1142/S1758825119500674   DOI
14 Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Ghorbanpour Arani, A. (2020d), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", JVC/J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203   DOI
15 Arshid, E., Amir, S. and Loghman, A. (2020b), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 109963622095502. https://doi.org/10.1177/1099636220955027   DOI
16 Garcia-Macias, E., Rodriguez-Tembleque, L. and Saez, A. (2018), "Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates", Compos. Struct., 186, 123-138. https://doi.org/10.1016/j.compstruct.2017.11.076   DOI
17 Karami, B. and Shahsavari, D. (2020), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets", Comput. Methods Appl. Mech. Eng., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767   DOI
18 Amir, S., Khorasani, M. and BabaAkbar-Zarei, H. (2018), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sandw. Struct. Mater., 109963621879538. https://doi.org/10.1177/1099636218795385   DOI
19 Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019a), "Sizedependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multiphysical pre loads", Smart Struct. Syst., 23(5), 429-447. https://doi.org/10.12989/sss.2019.23.5.429   DOI
20 Amir, S., Bidgoli, E.M.R. and Arshid, E. (2020a), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struct., 27(8), 605-619. https://doi.org/10.1080/15376494.2018.1487612   DOI
21 Amir, S., Vossough, A.R., Vossough, H. and Arshid, E. (2020b), "Nonlinear magneto-nonlocal vibration analysis of coupled piezoelectric micro-plates reinforced with agglomerated CNTs", Mech. Adv. Compos. Struct., 7(1), 109-119. https://doi.org/10.22075/macs.2019.16632.1185   DOI
22 Amir, S., Arshid, E. and Khoddami Maraghi, Z. (2020c), "Free vibration analysis of magneto-rheological smart annular threelayered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581   DOI
23 Amir, S., Soleimani-Javid, Z. and Arshid, E. (2019b), "Sizedependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT", ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 99(9), 1-21. https://doi.org/10.1002/zamm.201800334   DOI
24 Talebizadehsardari, P., Eyvazian, A., Asmael, M., Karami, B., Shahsavari, D., and Mahani, R.B. (2020), "Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes", Thin Wall. Struct., 157, 107139. https://doi.org/10.1016/j.tws.2020.107139   DOI
25 Zenkour, A.M. and Hafed, Z.S. (2020), "Bending response of functionally graded piezoelectric plates using a two variable shear deformation theory", Adv. Aircr. Spacecr. Sci., 7(2), 115-134. https://doi.org/10.12989/aas.2020.7.2.115   DOI
26 Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689   DOI
27 Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FGCNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/J.COMPSTRUCT.2017.01.048   DOI
28 Sahmani, S., Aghdam, M.M. and Bahrami, M. (2016), "Sizedependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures", Int. J. Mech. Sci., 107, 170-179. https://doi.org/10.1016/j.ijmecsci.2016.01.014   DOI
29 Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2020e), "Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Thermal Stress., 43(2), 133-156. https://doi.org/10.1080/01495739.2019.1660601   DOI
30 Arefi, M., Mohammad-Rezaei Bidgoli, E. and Rabczuk, T. (2019), "Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT", Thin-Wall. Struct., 142, 444-459. https://doi.org/10.1016/j.tws.2019.04.054   DOI
31 Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007   DOI
32 Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311   DOI
33 Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. http://dx.doi.org/10.12989/scs.2020.35.5.659   DOI
34 Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019b), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097   DOI
35 Arshid, E., Kiani, A., Amir, S. and Zarghami Dehaghani, M. (2019c), "Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermoelastic circular plates", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(16), 5659-5675. https://doi.org/10.1177/0954406219850598   DOI
36 Arshid, E., Amir, S. and Loghman, A. (2020a), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656   DOI
37 Arshid, E., Kiani, A. and Amir, S. (2019a), "Magneto-electroelastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(10), 2140-2159. https://doi.org/10.1177/1464420719832626   DOI
38 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media. https://doi.org/10.1007/b97697
39 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
40 Safarpour, H., Esmailpoor Hajilak, Z. and Habibi, M. (2019), "A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation", Int. J. Mech. Mater. Des., 15(3), 569-583. https://doi.org/10.1007/s10999-018-9431-8   DOI
41 Sahmani, S. and Aghdam, M.M. (2017a), "Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 132(11), 1-17. https://doi.org/10.1140/epjp/i2017-11773-4   DOI
42 Sahmani, S. and Aghdam, M.M. (2017b), "Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments", Arch. Civil Mech. Eng., 17(3), 623-638. https://doi.org/10.1016/j.acme.2017.01.004   DOI
43 Sahmani, S., Fattahi, A.M. and Ahmed, N.A. (2019), "Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams", Eng. Comput., 35(4), 1173-1189. https://doi.org/10.1007/s00366-018-0657-8   DOI
44 Selim, B.A., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory", Compos. Struct., 156, 276-290. https://doi.org/10.1016/j.compstruct.2015.10.026   DOI
45 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265   DOI
46 Akgoz, B. and Civalek, O. (2018), "Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment", Compos. Part B: Eng., 150, 68-77. https://doi.org/10.1016/j.compositesb.2018.05.049   DOI
47 Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9   DOI
48 Shen, H.-S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/J.COMPOSITESB.2017.03.020   DOI
49 Shingare, K.B. and Kundalwal, S.I. (2019), "Static and dynamic response of graphene nanocomposite plates with flexoelectric effect", Mech. Mater., 134, 69-84. https://doi.org/10.1016/j.mechmat.2019.04.006   DOI
50 Karami, B., Janghorban, M. and Tounsi, A. (2019c), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055   DOI
51 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019d), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a9. https://doi.org/10.1088/2053-1591/ab3474   DOI
52 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019e), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089   DOI
53 Sobhy, M. (2018), "Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces", Compos. Struct., 203, 844-860. https://doi.org/10.1016/j.compstruct.2018.07.056   DOI
54 Thai, C.H., Ferreira, A.J.M. and Phung-Van, P. (2019), "Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory", Compos. Part B: Eng., 169, 174-188. https://doi.org/10.1016/j.compositesb.2019.02.048   DOI
55 Van Thu, P. and Duc, N.D. (2016), "Nonlinear stability analysis of imperfect three-phase sandwich laminated polymer nanocomposite panels resting on elastic foundations in thermal environments", VNU J. Sci.: Math. Phys., 32(1), 20-36. http://js.vnu.edu.vn/index.php/MaP/article/view/423
56 Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/J.COMPSTRUCT.2018.03.090   DOI
57 Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On exact wave propagation analysis of triclinic material using threedimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487   DOI
58 Allahkarami, F. and Nikkhah-Bahrami, M. (2018), "The effects of agglomerated CNTs as reinforcement on the size-dependent vibration of embedded curved microbeams based on modified couple stress theory", Mech. Adv. Mater. Struct., 25(12), 995-1008. https://doi.org/10.1080/15376494.2017.1323144   DOI
59 Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203   DOI
60 Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019f), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036   DOI
61 Liu, H., Wu, H. and Lyu, Z. (2020), "Nonlinear resonance of FG multilayer beam-type nanocomposites: Effects of graphene nanoplatelet-reinforcement and geometric imperfection", Aerosp. Sci. Technol., 98, 105702. https://doi.org/10.1016/j.ast.2020.105702   DOI
62 Yu, T., Hu, H., Zhang, J. and Bui, T.Q. (2019), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin-Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006   DOI
63 Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory", Adv. Nano Res., 4(4), 309-326. https://doi.org/10.12989/anr.2016.4.4.309   DOI
64 Li, Q., Wu, D., Gao, W., Tin-Loi, F., Liu, Z. and Cheng, J. (2019), "Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory", Eur. J. Mech., A/Solids, 78, 103852. https://doi.org/10.1016/j.euromechsol.2019.103852   DOI
65 Mirjavadi, S.S., Forsat, M., Barati, M.R., Hamouda, A., Mirjavadi, S.S., Forsat, M. and Hamouda, A. (2020b), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-677. https://doi.org/10.12989/scs.2020.35.6.765   DOI
66 Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R., Hamouda, A.M.S. and Hamouda, A.M.S. (2020c), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047   DOI
67 Mirsalehi, M., Azhari, M. and Amoushahi, H. (2017), "Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method", Eur. J. Mech., A/Solids, 61, 1-13. https://doi.org/10.1016/j.euromechsol.2016.08.008   DOI
68 Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels", Compos. Struct., 142, 45-56. https://doi.org/10.1016/J.COMPSTRUCT.2015.12.071   DOI
69 Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683   DOI
70 Karami, B., Gheisari, P., Nazemosadat, S.M.R., Akbari, P., Shahsavari, D., Naghizadeh, M. and Naghizadeh, M. (2020), "Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates", Struct. Eng. Mech., 74(6), 809-819. https://doi.org/10.12989/sem.2020.74.6.809.   DOI
71 Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/J.COMPOSITESB.2016.09.001   DOI
72 Kolahdouzan, F., Gorbanpour Arani, A. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRCmicro sandwich plate", Steel Compos. Struct., 26(3), 273-287. http://dx.doi.org/10.12989/scs.2018.26.3.273   DOI
73 Lin, H.G., Cao, D.Q. and Xu, Y.Q. (2018), "Vibration, buckling and aeroelastic analyses of functionally graded multilayer graphene-nanoplatelets-reinforced composite plates embedded in piezoelectric layers", Int. J. Appl. Mech., 10(3), 1850023. https://doi.org/10.1142/S1758825118500230   DOI
74 Loghman, A. and Cheraghbak, A. (2018), "Agglomeration effects on electro-magneto-thermo elastic behavior of nano-composite piezoelectric cylinder", Polym. Compos., 39(5), 1594-1603. https://doi.org/10.1002/pc.24104   DOI
75 Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216, 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095   DOI
76 Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293   DOI
77 Behdinan, K., Moradi-Dastjerdi, R., Safaei, B., Qin, Z., Chu, F. and Hui, D. (2020), "Graphene and CNT impact on heat transfer response of nanocomposite cylinders", Nanotechnol. Reviews, 9(1), 41-52. https://doi.org/10.1515/ntrev-2020-0004   DOI
78 Brush, D.O., Almroth, B.O. and Hutchinson, J.W. (1975), "Buckling of bars, plates, and shells", J. Appl. Mech., 42, 911. https://doi.org/10.1115/1.3423755   DOI
79 Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/GAE.2020.21.5.471   DOI
80 Cinefra, M., Valvano, S. and Carrera, E. (2015), "A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches", Int. J. Smart Nano Mater., 6(2), 85-104. https://doi.org/10.1080/19475411.2015.1037377   DOI
81 Duc, N.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266   DOI
82 Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109   DOI
83 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087   DOI
84 Li, Q., Wu, D., Gao, W. and Tin-Loi, F. (2020), "Size-dependent instability of organic solar cell resting on Winkler-Pasternak elastic foundation based on the modified strain gradient theory", Int. J. Mech. Sci., 177, 105306. https://doi.org/10.1016/j.ijmecsci.2019.105306   DOI