Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.1.073

Synthesis of hairpin DNA mediated Au-Ag bimetallic nanomushrooms for antibacterial application  

Fu, Jingtai (School of Chemistry, Sun Yat Sen University)
Huang, Lu (School of Chemistry, Sun Yat Sen University)
Yu, Zhongning (School of Chemistry, Sun Yat Sen University)
Zhang, Zhuomin (School of Chemistry, Sun Yat Sen University)
Li, Gongke (School of Chemistry, Sun Yat Sen University)
Publication Information
Advances in nano research / v.11, no.1, 2021 , pp. 73-81 More about this Journal
Abstract
Precise control of the synthesis of bimetallic nanoparticles with specific morphology and structure is of great significance due to their excellent catalytic, optical and biological property. DNA molecules are considered as a kind of efficient templates to mediate the precise synthesis of bimetallic nanoparticles with homogeneous morphology due to their specific and controllable structure. In this study specific hairpin DNA strands were successfully utilized as templates to mediate the synthesis of special mushroom-like Au-Ag bimetallic nanoparticles with a high yield of > 90%. Several key factors greatly influencing the precise control of the morphology and UV-Vis characteristics of the proposed Au-Ag nanomushrooms during synthesis were investigated and optimized in detail, including the structure of template DNA, loading amounts of DNA, types of reductant agents and surfactants. Then, the formation mechanism of hairpin DNA mediated Au-Ag nanomushrooms was studied. Finally, the proposed Au-Ag nanomushrooms with good biocompatibility were applied for the antibacterial study by the growth curve of E. coli. The proposed Au-Ag nanomushrooms showed the effective inhibition capability for the growth of E. coli. The results suggested that these DNA mediated Au-Ag nanomushrooms possessed great potential applications for biomedical science in future.
Keywords
antibacterial study; Au-Ag bimetallic nanomushrooms; biocompatibility; hairpin DNA mediated;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fan, Z. and Zhang, H. (2016), "Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Accounts of chemical research", Accounts Chem. Res., 49(12), 2841-2850. https://doi.org/10.1021/acs.accounts.6b00527.   DOI
2 Gilroy, K.D., Ruditskiy, A., Peng, H., Qin, D. and Xia, Y. (2016), "Bimetallic nanocrystals: Syntheses, properties, and applications", Chem. Rev., 116(18), 10414-10472. https://doi.org/10.1021/acs.chemrev.6b00211.   DOI
3 Gu, H.W., Yang, Z.M., Gao, J.H., Chang, C.K., and Xu, B. (2005), "Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules", J. Am. Chem. Soc., 127(1), 34-35. https://doi.org/10.1021/ja045220h.   DOI
4 Lu, X., Tao, L., Song, D., Li, Y. and Gao, F. (2018), "Bimetallic Pd@Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides", Sensor Actuat. B Chem., 255, 2575-2581. https://doi.org/10.1016/j.snb.2017.09.063.   DOI
5 Tan, L.H., Yue, Y., Satyavolu, N.S.R., Ali, A.S., Wang, Z., Wu, Y. and Lu, Y. (2015), "Mechanistic insight into DNA-guided control of nanoparticle morphologies", J. Am. Chem. Soc., 137(45), 14456-14464. https://doi.org/10.1021/jacs.5b09567.   DOI
6 Wang, H., Qiao, X., Chen, J., Wang, X. and Ding, S. (2005), "Mechanisms of PVP in the preparation of silver nanoparticles", Mater. Chem. Phys., 94(2-3), 449-453. https://doi.org/10.1016/j.matchemphys.2005.05.005.   DOI
7 Ma, Y., Wu, X. and Zhang, G. (2017), "Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: Enhanced catalytic performance and DFT study", Appl. Catal. B Environ., 205, 262-270. https://doi.org/10.1016/j.apcatb.2016.12.025.   DOI
8 Bhamidipati, M. and Fabris, L. (2017), "Multiparametric assessment of gold nanoparticle cytotoxicity in cancerous and healthy cells: The role of size, shape, and surface chemistry", Bioconjugate Chem., 28(2), 449-460. https://doi.org/10.1021/acs.bioconjchem.6b00605.   DOI
9 Zhang, Z., Gao, J., Yu, Z. and Li, G. (2019), "Synthesis of tunable DNA-directed trepang-like Au nanocrystals for imaging application", Nanoscale, 11(39), 18099-18108. https://xs.scihub.ltd/10.1039/C9NR06375G.   DOI
10 Zhao, J., Long, L., Weng, G., Li, J., Zhu, J. and Zhao, J. (2017), "Multi-branch Au/Ag bimetallic core-shell-satellite nanoparticles as a versatile SERS substrate: The effect of Au branches in a mesoporous silica interlayer", J. Mater. Chem. C, 5(48), 12678-12687. https://xs.scihub.ltd/10.1039/C7TC03788K.   DOI
11 Jawad, M., Ali, S., Waseem, A., Rabbani, F., Amin, B.A.Z., Bilal, M. and Shaikh, A.J. (2019), "Plasmonic effects and size relation of gold-platinum alloy nanoparticles", Adv. Nano Res., 7(3), 167-178. https://doi.org/10.12989/anr.2019.7.3.167.
12 Berahim, N., Basirun, W.J., Leo, B.F. and Johan, M.R. (2018), "Synthesis of Bimetallic Gold-Silver (Au-Ag) Nanoparticles for the Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol", Catalysts, 8(10), 412. https://doi.org/10.3390/catal8100412.   DOI
13 Wang, Z., Zhang, J., Ekman, J. M., Kenis, P.J. and Lu, Y. (2010), "DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers", Nano Lett., 10(5), 1886-1891. https://doi.org/10.1021/nl100675p.   DOI
14 Fu, J., Zhang, Z. and Li, G. (2019), "Progress on the development of DNA-mediated metal nanomaterials for environmental and biological analysis", Chinese Chem. Lett., 30(2), 285-291. https://doi.org/10.1016/j.cclet.2018.10.031.   DOI
15 Kim, S.J., Choi, S.J., Jang, J.S., Cho, H.J., Koo, W.T., Tuller, H.L. and Kim, I.D. (2017), "Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers", Adv. Mater., 29(36), 1700737. https://doi.org/10.1002/adma.201700737.   DOI
16 Lee, J.H., You, M.H., Kim, G.H. and Nam, J.M. (2014), "Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes", Nano Lett., 14(11), 6217-6225. https://doi.org/10.1021/nl502541u.   DOI
17 Li, J., Zhu, Z., Liu, F., Zhu, B., Ma, Y., Yan, J., Lin, B., Ke, G., Liu, R., Zhou, L., Tu. S. and Yang. C. (2016), "DNA-mediated morphological control of silver nanoparticles", Small, 12(39), 5449-5487. https://doi.org/10.1002/smll.201601338.   DOI
18 Wang, P., Lin, Z., Su, X. and Tang, Z. (2017), "Application of Au based nanomaterials in analytical science", Nano Today, 12, 64-97. https://doi.org/10.1016/j.nantod.2016.12.009.   DOI
19 Chen, Z., Liu, C., Cao, F., Ren, J. and Qu, X. (2018), "DNA metallization: principles, methods, structures, and applications", Chem. Soc. Rev., 47(11), 4017-4072. https://xs.scihub.ltd/10.1039/C8CS00011E.   DOI
20 Chi, M., Wang, C., Lei, Y., Wang, G., Li, D., More, K.L., Lupini, A., Allard, L.F., Markovic, N.M. and Stamenkovic, V.R. (2015), "Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing", Nature Commun., 6, 8925. https://xs.scihub.ltd/https://doi.org/10.1038/ncomms9925.   DOI
21 Habibi, M.H., Kamrani, R. and Mokhtari, R. (2010), "Fabrication and characterization of copper nanoparticles using thermal reduction: The effect of nonionic surfactants on size and yield of nanoparticles", Microchim. Acta. 171(1-2), 91-95. https://doi.org/10.1007/s00604-010-0413-2.   DOI
22 Han, L., Li, C., Zhang, T., Lang, Q. and Liu, A. (2015), "Au@ Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH", ACS Appl. Mater. Interfac., 7(26), 14463-14470. https://doi.org/10.1021/acsami.5b03591.   DOI
23 Lee, J.H., Kim, G.H. and Nam, J.M. (2012), "Directional synthesis and assembly of bimetallic nanosnowmen with DNA", J. Am. Chem. Soc., 134(12), 5456-5459. https://doi.org/10.1021/ja2121525.   DOI
24 Niu, Z., Cui, F., Yu, Y., Becknell, N., Sun, Y., Khanarian, G., Kim, D., Dou, L., Dehestani, A., Schierle Arndt, K. and Yang. P. (2017), "Ultrathin epitaxial Cu@ Au core-shell nanowires for stable transparent conductors", J. Am. Chem. Soc., 139(21), 7348-7354. https://doi.org/10.1021/jacs.7b02884.   DOI
25 Li, S., Wei, T., Tang, M., Chai, F., Qu, F. and Wang, C. (2018), "Facile synthesis of bimetallic Ag-Cu nanoparticles for colorimetric detection of mercury ion and catalysis", Sensor Actuat. B Chem., 255, 1471-1481. https://doi.org/10.1016/j.snb.2017.08.159.   DOI
26 Ma, X., Huh, J., Park, W., Lee, L.P., Kwon, Y. J. and Sim, S.J. (2016), "Gold nanocrystals with DNA-directed morphologies", Nature Commun., 7(1), 1-8. https://doi.org/10.1038/ncomms12873.   DOI
27 Mandal, R., Baranwal, A., Srivastava, A. and Chandra, P. (2018), "Evolving trends in bio/chemical sensor fabrication incorporating bimetallic nanoparticles", Biosens. Bioelectron., 117, 546-561. https://doi.org/10.1016/j.bios.2018.06.039.   DOI
28 Satyavolu, N.S.R., Tan, L.H. and Lu, Y. (2016), "DNA-mediated morphological control of Pd-Au bimetallic nanoparticles", J. Am. Chem. Soc., 138(50), 16542-16548. https://doi.org/10.1021/jacs.6b10983.   DOI
29 Madsen, M. and Gothelf, K.V. (2019), "Chemistries for DNA nanotechnology", Chem. Rev., 119(10), 6384-6458. https://doi.org/10.1021/acs.chemrev.8b00570.   DOI
30 Zhang, Y., Yang, P., Habeeb Muhammed, M.A., Alsaiari, S.K., Moosa, B., Almalik, A., Kumar, A., Ringe, E. and Khashab, N.M. (2017), "Tunable and linker free nanogaps in core-shell plasmonic nanorods for selective and quantitative detection of circulating tumor cells by SERS. ACS applied materials & interfaces", ACS Appl. Mater. Interfac., 9(43), 37597-37605. https://doi.org/10.1021/acsami.7b10959.   DOI
31 Zhang, Y., Wang, G., Yang, L., Wang, F. and Liu, A. (2018), "Recent advances in gold nanostructures based biosensing and bioimaging", Coordination Chem. Rev., 370, 1-21. https://doi.org/10.1016/j.ccr.2018.05.005.   DOI
32 Zaleska Medynska, A., Marchelek, M., Diak, M. and Grabowska, E. (2016), "Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties", Adv. Colloid. Interfac., 229, 80-107. https://doi.org/10.1016/j.cis.2015.12.008.   DOI
33 Martinsson, E., Shahjamali, M.M., Large, N., Zaraee, N., Zhou, Y., Schatz, G.C., Mirkin, C.A. and Aili, D. (2016), "Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles", Small, 12(3), 330-342. https://doi.org/10.1002/smll.201502449.   DOI
34 Satyavolu, N.S.R., Loh, K.Y., Tan, L.H. and Lu, Y. (2019), "Discovery of and insights into DNA "codes" for tunable morphologies of metal nanoparticles", Small, 15(26), 1900975. https://doi.org/10.1002/smll.201900975.   DOI
35 Shen, J., Su, J., Yan, J., Zhao, B., Wang, D., Wang, S., Li, K., Liu, M., He, Y., Mathur, S., Fan, C. and Song, S. (2015), "Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification", Nano Res., 8(3), 731-742. https://doi.org/10.1007/s12274-014-0556-2.   DOI
36 Song, T., Tang, L., Tan, L. H., Wang, X., Satyavolu, N. S. R., Xing, H., Wang, Z., Li, J., Liang, H. and Lu, Y. (2015), "DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds", Angew. Chem. Int. Edit., 54(28), 8114-8118. https://doi.org/10.1002/anie.201500838.   DOI
37 Zhang, Z., Zhao, B. and Hu, L. (1996), "PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes", J. Solid St. Chem., 121(1), 105-110. https://doi.org/10.1006/jssc.1996.0015.   DOI
38 Da Silva, A.G.M., Rodrigues, T.S., Haigh, S.J. and Camargo, P.H.C. (2017), "Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications", Chem. Commun., 53(53), 7135-7148. https://xs.scihub.ltd/10.1039/C7CC02352A.   DOI
39 Demers, L.M., Mirkin, C.A., Mucic, R.C., Reynolds, R.A., Letsinger, R.L., Elghanian, R. and Viswanadham, G. (2000), "A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles", Anal. Chem., 72(22), 5535-5541. https://pubs.acs.org/doi/10.1021/ac0006627.   DOI
40 Guo, R., Yin, F., Sun, Y., Mi, L., Shi, L., Tian, Z. and Li, T. (2018), "Ultrasensitive simultaneous detection of multiplex disease-related nucleic acids using double-enhanced surface-enhanced Raman scattering nanosensors", ACS Appl. Mater. Interfac., 10(30), 25770-25778. https://doi.org/10.1021/acsami.8b06757.   DOI
41 Lim, D., Kim, I. and Nam, J. (2008), "DNA-embedded Au/Ag core-shell nanoparticles", Chem. Commun. (42), 5312-5314. https://xs.scihub.ltd/10.1039/B810195G.   DOI
42 Liz Marzan, L.M. (2006), "Tailoring surface plasmons through the morphology and assembly of metal nanoparticles", Langmuir, 22(1), 32-41. https://doi.org/10.1021/la0513353.   DOI
43 Su, J., Wang, D., Norbel, L., Shen, J., Zhao, Z., Dou, Y., Peng, T., Shi, J., Mathur, S., Fan C. and Song, S. (2017), "Multicolor gold-silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection", Anal. Chem., 89(4), 2531-2538. https://doi.org/10.1021/acs.analchem.6b04729.   DOI
44 Taylor, A.K., Perez, D.S., Zhang, X., Pilapil, B.K., Engelhard, M.H., Gates, B.D. and Rider, D.A. (2017), "Block copolymer templated synthesis of Ptlr bimetallic nanocatalysts for the formic acid oxidation reaction", J. Mater. Chem. A, 5(40), 21514-21527. https://xs.scihub.ltd/10.1039/C7TA06458F.   DOI
45 Xia, Y., Gilroy, K.D., Peng, H.C. and Xia, X. (2017), "Seed-mediated growth of colloidal metal nanocrystals", Angew. Chem. Int. Edit., 56(1), 60-95. https://doi.org/10.1002/anie.201604731.   DOI
46 Yatsunyk, L.A., Mendoza, O. and Mergny, J. (2014), ""Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices", Accounts Chem. Res., 47(6), 1836-1844. https://doi.org/10.1021/ar500063x.   DOI
47 Yin, Z., Wang, Y., Song, C., Zheng, L., Ma, N., Liu, X., Li, S., Lin, L., Li, M., Xu, Y., Li, W., Hu, G., Fang, Z. and Ma, D. (2018), "Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering", J. Am. Chem. Soc., 140(3), 864-867. https://doi.org/10.1021/jacs.7b11293.   DOI