Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.6.509

Instability analysis of microfilaments with and without surface effects using Euler theory  

Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Mahmood, Shaid (Department of Mathematics, University of Azad Jammu and Kashmir)
Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Rashid, Yahya (Prince Sattam Bin Abdulaziz University, College of Engineering)
Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir)
Naeem, M. Nawaz (Department of Mathematics, Govt. College University Faisalabad)
Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad)
Ponnore, Joffin (Prince Sattam Bin Abdulaziz University, College of Engineering)
Al Qahtani, Abdelaziz (Prince Sattam Bin Abdulaziz University, College of Engineering)
Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University)
Alwabli, Afaf S. (Department of Biological Sciences, Faculty of Science, King Abdulaziz University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in nano research / v.10, no.6, 2021 , pp. 509-516 More about this Journal
Abstract
The study of cell components has been an active area of research since the last few decades. Cytoskeleton of the cell which gives shape and provides structure to the cell has three main components, microtubules, microfilaments and intermediate filaments. Each of the cytoskeletal components is surrounded by various filamentous or the other cytoskeletal components act as a surface layer on these filaments. The stability of these components affected when cell perform various functions in the body and as a result these filaments buckle, vibrate and bend. In the present study the buckling behavior of microfilament is discussed with the effects of surface by using Euler Bernoulli beam theory and the obtained results for free and surrounded microfilament are shown in the tables and figures.
Keywords
microfilaments; Euler conventional beam model; buckling; surface effects;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bennett, V. and Baines, A.J. (2001), "Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues", Phys. Rev., 81(3), 1353-1392. http://doi.org/10.1152/physrev.2001.81.3.1353.   DOI
2 Pan, X., Hobbs, R.P. and Coulombe, P.A. (2013), "The expanding significance of keratin intermediate filaments in normal and diseased epithelia", Curr. Opin. Cell Biol., 25(1), 47-56. http://doi.org/10.1016/j.ceb.2012.10.018.   DOI
3 Panda, S.K. and Singh, B.N. (2013b), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM# ", Mech. Based Des. Struct., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330.   DOI
4 Qian, X.S., Zhang, J.Q. and Ru, C.Q. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.   DOI
5 Raff, M., Alberts, B., Lewis, J., Johnson, A. and Roberts, K. (2002), Molecular Biology of the Cell, 4th edition, National Center for Biotechnology InformationO s Bookshelf.
6 Takasone, T., Juodkazis, S., Kawagishi, Y., Yamaguchi, A., Matsuo, S., Sakakibara, H., Nakayama, H. and Misawa, H. (2002), "Flexural rigidity of a single microtubule", Jpn. J. Appl. Phys., 41(5R), 3015. http://doi.org/1347-4065/41/5R/3015.   DOI
7 Venier, P., Maggs, A.C., Carlier, M.F. and Pantaloni, D. (1994), "Analysis of microtubule rigidity using hydrodynamic flow and thermalfluctuations", J. Biol. Chem., 269(18), 13353-13360. http://doi.org/10.1529/biophysj.103.038877.   DOI
8 Zhao, X. and Rajapakse, R. (2009), "Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects", Int. J. Eng. Sci., 47(11-12), 1433-1444. http://doi.org/10.1016/j.ijengsci.2008.12.0131434X.   DOI
9 Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, Int. J., 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.   DOI
10 Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stresses, 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.   DOI
11 Taj, M. and Zhang, J. (2014), "Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model", J. Mech. Behav. Biomed. Mater., 30, 300-305. http://doi.org/10.1016/j.jmbbm.2013.11.011.   DOI
12 Panda, S.K. and Singh, B.N. (2013a), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097.   DOI
13 Schliwa, M. and Woehlke, G. (2003), "Molecular motors", Nature, 422(6933), 759-765. http://doi.org/10.1016/j.cub.2007.04.025.   DOI
14 Sirenko, Y.M., Stroscio, M.A. and Kim, K.W. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.   DOI
15 Stehn, J.R., Haass, N.K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H., Zeng, J., Nascimento, P.R.B.B., Sequeira, V.B., Butler, T.L., Allanson, M., Fath, T., Hill, T.A., McCluskey, A., Schevzov, G., Palmer, S.J., Hardeman, E.C., Winlaw, D., Reeve, V.E., Dixon, I., Weninger, W., Cripe, T.P. and Gunning, P.W. (2013), "A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells", Cancer Res., 73(16), 5169-5182. http://doi.org/10.1158/0008-5472.   DOI
16 Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., Khan, A.Q. and Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, Int. J., 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.   DOI
17 Tuszynski, J.A., Luchko, T., Portet, S. and Dixon, J.M. (2005), "Anisotropic elastic properties of microtubules", Eur. Phys. J. E, 17(1), 29-35. http://doi.org/10.1140/epje/i2004-10102-5.   DOI
18 Van der Lebenskraft, G.D.L. "Biological science" redirects here. It is not to be confused with life science. For other uses, see Biology (disambiguation).
19 Vindin, H. and Gunning, P. (2013), "Cytoskeletal tropomyosins: choreographers of actin filament functional diversity", J. Muscle Res. Cell M., 34(3-4), 261-274. http://doi.org/10.1007/978-0-387-84847-1_10.   DOI
20 Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, Int. J., 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.   DOI
21 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech.-ASCE, 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.   DOI
22 Kreplak, L., Bar, H., Leterrier, J.F., Herrmann, H. and Aebi, U. (2005), "Exploring the mechanical behavior of single intermediate filaments", J. Mol. Biol., 354(3), 569-577. http://doi.org/10.1016/j.jmb.2005.09.092.   DOI
23 Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1083/jcb.120.4.923.   DOI
24 Cammarata, R.C. (1994), "Surface and interface stress effects in thin films", Prog. Surf. Sci., 46(1), 1-38. https://doi.org/10.1016/0079-6816(94)90005-1.   DOI
25 Carter, N.J. and Cross, R. (2005), "Mechanics of the kinesin step", Nature, 435(7040), 308-312. https://doi.org/10.1038/nature03528.   DOI
26 Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)," Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.   DOI
27 Gurtin, M., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977.   DOI
28 AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study" Comput. Concrete, Int. J., 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.   DOI
29 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel. Compos. Struct., Int. J., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603   DOI
30 Jerusalem, A. and Dao, M. (2012), "Continuum modeling of a neuronal cell under blast loading", Acta Biomater., 8(9), 3360-3371. http://doi.org/10.1016/j.actbio.2012.04.039.   DOI
31 Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, Int. J., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.   DOI
32 Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, Int. J., 19(6), 677-687. http://doi.org/10.12989/cac.2017.19.6.677.   DOI
33 Lundin, V.F., Leroux, M.R. and Stirling, P.C. (2010), "Quality control of cytoskeletal proteins and human disease", Trend. Biochem. Sci., 35(5), 288-297. https://doi.org/10.1016/j.tibs.2009.12.007.   DOI
34 Noria, S., Xu, F., McCue, S., Jones, M., Gotlieb, A.I. and Langille, B.L. (2004), "Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress", Am. J. Pathol., 164(4), 1211-1223. https://doi.org/10.1371/journal.pone.0004853.   DOI
35 Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press. http://doi.org/10.1017/CBO9780511607318.
36 Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, Int. J., 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.   DOI
37 Netter, F.H. (1989), Atlas of Human Anatomy, Ciba-Geigy Corporation.
38 Panda, S.K. and Singh, B.N. (2010), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.   DOI
39 Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., Int. J., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.   DOI
40 Pokorny, J., Jelinek, F., Trkal, V., Lamprecht, I. and Holzel, R. (1997), "Vibrations in microtubules", J. Biol. Phys., 23(3), 171-179. https://doi.org/10.1023/A.   DOI
41 Ebrahimi, F., Karimiasl, M., Civalek, O . and Vinyas, M. (2019), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., Int. J., 7(2), 77-88. http://doi.org/10.12989/anr.2019.7.2.077.   DOI
42 Akbas, S.D., Mercan, K. and Civalek, O. (2020), "Post-buckling analysis of aorta artery under axial compression loads", Adv. Nano Res., Int. J., 8(3), 255-264. https://doi.org/10.12989/anr.2020.8.3.255.   DOI
43 Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002), "Cell Movements and the Shaping of the Vertebrate Body", In: Molecular Biology of the Cell, 4th edition, Garland Science.
44 Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.   DOI
45 Civalek, O., Uzun, B. and Yayli, M.O. (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., Int. J., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.   DOI
46 Elzinga, M., Collins, J.H., Kuehl, W.M. and Adelstein, R.S. (1973), "Complete amino-acid sequence of actin of rabbit skeletal muscle", Proceedings of the National Academy of Sciences, 70(9), 2687-2691. http://doi.org/10.1073/pnas.70.9.2687.   DOI
47 Almor, J.M., Baulies, M.D., Urgell, J.D., Colet, J.C., Capdevila, M.C. and Cortada, J.B. (2004), "Prevalence and clinical course of patients in Spain with acute myocardial infarction and severely depressed ejection fraction who meet the criteria for automatic defibrillator implantation", Revista Espanola de Cardiologia (English Edition), 57(7), 705-708. http://doi.org/10.1016/S1885-5857(06)60297-1.   DOI
48 Brangwynne, C.P., MacKintosh, F.C., Kumar, S., Geisse, N.A., Talbot, J., Mahadevan, L., Parker, K.K., Ingber, D.E. and Weitz, D.A. (2006), "Microtubules can bear enhanced compressive loads in living cellsbecause of lateral reinforcement", J. Cell Biol., 173(5), 733-741. https://doi.org/10.1083/jcb.200601060.   DOI
49 Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1063/1.5086216.   DOI
50 Simons, C.T., Staes, A., Rommelaere, H., Ampe, C., Lewis, S.A. and Cowan, N.J. (2004), "Selective contribution of eukaryotic prefoldin subunits to actin and tubulin binding", J. Biol. Chem., 279(6), 4196-4203. https://doi.org/10.1074/jbc.M306053200.   DOI
51 Chen, T., Chiu, M.S. and Weng, C.N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces innanoscaled solids", J. Appl. Phys., 100(7), 074308. https://doi.org/10.1063/1.2356094.   DOI
52 Ebrahimi, F. and Daman, M. (2017), "Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams", Adv. Nano Res., Int. J., 5(1), 35-47. http://doi.org/10.12989/anr.2017.5.1.035.   DOI
53 Taj, M.S.M. (2019), "Vibrational analysis of microtubules embedded within viscoelastic medium using orthotropic Kelvin like model", Sains Malaysiana, 48(12), 2841-2847. http://doi.org/10.17576/jsm2019-4812-25.   DOI
54 Crowley, C.A., Curnutte, J.T., Rosin, R.E., Andre-Schwartz, J., Gallin, J.I., Klempner, M., Snyderman, R., Southwick, F.S., Stossel, T.P. and Babior, B.M. (1980) "An inherited abnormality of neutrophil adhesion: its genetic transmission and its association with a missing protein", New Engl. J. Med., 302(21), 1163-1168. https://doi.org/10.1056/NEJM198005223022102.   DOI
55 Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, Int. J., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.   DOI
56 Gunning, P.W., Ghoshdastider, U., Whitaker, S., Popp, D. and Robinson, R.C. (2015), "The evolution of compositionally and functionally distinct actin filaments", J. Cell. Sci, 128(11), 2009-2019. http://doi.org/10.1242/jcs.165563.   DOI
57 Hanukogle, I., Tanese, N. and Fuchs, E. (1983), "Complementary DNA sequence of a human cytoplasmic actin: Interspecies divergence of 3 non-coding regions", J. Molecular Biol., 163(4), 673-678. https://doi.org/10.1016/0022-2836(83)90117-1.   DOI
58 Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.   DOI
59 He, J. and Lilley, C.M. (2008), "Surface effect on the elastic behavior of static bending nanowires", Nano. Lett., 8(7), 1798- 1802. https://doi.org/10.1063/1.4748975.   DOI
60 Kamali, M., Shamsi, M. and Saidi, A.R. (2018), "Surface effect on buckling of microtubules in living cells using first-order shear deformation shell theory and standard linear solid model", Mech. Res. Commun., 92, 111-117. https://doi.org/10.1007/s00542-018-4072-2.   DOI
61 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. http://doi.org/10.12989/sss.2017.20.5.595   DOI
62 Kikumoto, M., Kurachi, M., Tosa, V. and Tashiro, H. (2006), "Flexural rigidity of individual microtubules measured by a buckling force with optical traps", Biophys. J., 90(5), 1687-1696. https://doi.org/10.1529/biophys.   DOI