Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.5.415

Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications  

Chuan, M.W. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Lau, J.Y. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Wong, K.L. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Hamzah, A. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Alias, N.E. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Lim, C.S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Tan, M.L.P (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Publication Information
Advances in nano research / v.10, no.5, 2021 , pp. 415-422 More about this Journal
Abstract
Silicene, a 2D allotrope of silicon, is predicted to be a potential material for future transistor that might be compatible with present silicon fabrication technology. Similar to graphene, silicene exhibits the honeycomb lattice structure. Consequently, silicene is a semimetallic material, preventing its application as a field-effect transistor. Therefore, this work proposes the uniform doping bandgap engineering technique to obtain the n-type silicene nanosheet. By applying nearest neighbour tight-binding approach and parabolic band assumption, the analytical modelling equations for band structure, density of states, electrons and holes concentrations, intrinsic electrons velocity, and ideal ballistic current transport characteristics are computed. All simulations are done by using MATLAB. The results show that a bandgap of 0.66 eV has been induced in uniformly doped silicene with phosphorus (PSi3NW) in the zigzag direction. Moreover, the relationships between intrinsic velocity to different temperatures and carrier concentration are further studied in this paper. The results show that the ballistic carrier velocity of PSi3NW is independent on temperature within the degenerate regime. In addition, an ideal room temperature subthreshold swing of 60 mV/dec is extracted from ballistic current-voltage transfer characteristics. In conclusion, the PSi3NW is a potential nanomaterial for future electronics applications, particularly in the digital switching applications.
Keywords
doped silicon; bandgap engineering; 2D material; nanoelectronics; ballistic current transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lundstrom, M. and Jeong, C. (2013), Near-Equilibrium Transport: Fundamentals and Applications, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/7975.
2 Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A. and Akinwande, D. (2015), "Silicene field-effect transistors operating at room temperature", Nature nanotechnol., 10(3), 227. https://doi.org/10.1038/NNANO.2014.325.   DOI
3 Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2017b), "Band gap engineering of BC2N for nanoelectronic applications", Superlattice. Microst., 112, 328-338. https://doi.org/10.1016/j.spmi.2017.09.040.   DOI
4 Lew Yan Voon, L., Zhu, J. and Schwingenschlogl, U. (2016), "Silicene: Recent theoretical advances", Appl. Phys. Rev., 3(4), 040802. https://doi.org/10.1063/1.4944631.   DOI
5 Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2017a), "Analytical study of the electronic properties of boron nitride nanosheet", 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). https://doi.org/10.1109/RSM.2017.8069115.   DOI
6 Ma, L., Zhang, J.-M., Xu, K.-W. and Ji, V. (2014), "Nitrogen and Boron substitutional doped zigzag silicene nanoribbons: Ab initio investigation", Physica E, 60, 112-117. https://doi.org/10.1016/j.physe.2014.02.013.   DOI
7 Mohan, B., Kumar, A. and Ahluwalia, P.K. (2014), "Electronic and optical properties of silicene under uni-axial and bi-axial mechanical strains: A first principle study", Physica E, 61, 40-47. https://doi.org/10.1016/j.physe.2014.03.013.   DOI
8 Molle, A., Grazianetti, C., Tao, L., Taneja, D., Alam, M.H. and Akinwande, D. (2018), "Silicene, silicene derivatives, and their device applications", Chem. Soc. Rev., 47(16), 6370-6387. https://doi.org/10.1039/C8CS00338F.   DOI
9 Balendhran, S., Walia, S., Nili, H., Sriram, S. and Bhaskaran, M. (2015), "Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene", Small., 11(6), 640-652. https://doi.org/10.1002/smll.201402041.   DOI
10 Lundstrom, M.S. and Antoniadis, D.A. (2014), "Compact models and the physics of nanoscale FETs", IEEE T. Electron Dev., 61(2), 225-233. https://doi.org/10.1109/TED.2013.2283253.   DOI
11 Voon, L.L.Y., Lopez-Bezanilla, A., Wang, J., Zhang, Y. and Willatzen, M. (2015), "Effective Hamiltonians for phosphorene and silicene", New J. Phys., 17(2), 025004. https://doi.org/10.1088/1367-2630/17/2/025004.   DOI
12 Stpniak-Dybala, A., Dyniec, P., Kopciuszyski, M., Zdyb, R., Jalochowski, M. and Krawiec, M. (2019), "Planar silicene: a new silicon allotrope epitaxially grown by segregation", Adv. Funct. Mater., 29(50), 1906053. https://doi.org/10.1002/adfm.201906053.   DOI
13 Ni, Z., Zhong, H., Jiang, X., Quhe, R., Luo, G., Wang, Y., Ye, M., Yang, J., Shi, J. and Lu, J. (2014), "Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors", Nanoscale, 6(13), 7609-7618. https://doi.org/10.1039/c4nr00028e.   DOI
14 Rahman, A., Guo, J., Datta, S. and Lundstrom, M.S. (2003), "Theory of ballistic nanotransistors", IEEE T. Electron Dev., 50(9), 1853-1864. https://doi.org/10.1109/TED.2003.815366.   DOI
15 Schwierz, F., Pezoldt, J. and Granzner, R. (2015), "Two-dimensional materials and their prospects in transistor electronics", Nanoscale, 7(18), 8261-8283. https://doi.org/10.1039/C5NR01052G.   DOI
16 Supriyo, D. (2017), Lessons From Nanoelectronics: A New Perspective On Transport -Part A: Basic Concepts, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/10440-vol1.
17 Ali, M., Pi, X., Liu, Y. and Yang, D. (2017), "Electronic and magnetic properties of graphene, silicene and germanene with varying vacancy concentration", AIP Adv., 7(4), 045308. https://doi.org/10.1063/1.4980836.   DOI
18 Banerjee, S.K., Register, L.F., Tutuc, E., Basu, D., Kim, S., Reddy, D. and MacDonald, A.H. (2010), "Graphene for CMOS and beyond CMOS applications", Proc. IEEE., 98(12), 2032-2046. https://doi.org/10.1109/JPROC.2010.2064151.   DOI
19 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147. https://doi.org/10.12989/anr.2018.6.2.147.   DOI
20 Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020d), "A review of the top of the barrier nanotransistor models for semiconductor nanomaterials", Superlattice. Microst., 140 106429. https://doi.org/10.1016/j.spmi.2020.106429.   DOI
21 Johari, Z., Ahmadi, M.T., Chek, D.C.Y., Amin, N.A. and Ismail, R. (2010), "Modelling of graphene nanoribbon Fermi energy", J. Nanomater., 2010 14. https://doi.org/10.1155/2010/909347.   DOI
22 Chhowalla, M., Jena, D. and Zhang, H. (2016), "Two-dimensional semiconductors for transistors", Nature Rev. Mater., 1(11), 16052. https://doi.org/10.1038/natrevmats.2016.52.   DOI
23 Ahmadi, M.T., Lau, H.H., Ismail, R. and Arora, V.K. (2009), "Current-voltage characteristics of a silicon nanowire transistor", Microelectron. J., 40(3), 547-549. https://doi.org/10.1016/j.mejo.2008.06.060.   DOI
24 Tang, Q. and Zhou, Z. (2013), "Graphene-analogous low-dimensional materials", Prog. Mater. Sci., 58(8), 1244-1315. https://doi.org/10.1016/j.pmatsci.2013.04.003.   DOI
25 Taur, Y., Mii, Y.-J., Frank, D.J., Wong, H.-S., Buchanan, D.A., Wind, S.J., Rishton, S.A., Sai-Halasz, G. and Nowak, E.J. (1995), "CMOS scaling into the 21st century: 0.1 ㎛ and beyond", IBM J. Res. Dev., 39(1.2), 245-260. https://doi.org/10.1147/rd.391.0245.   DOI
26 Arora, V.K., Tan, M.L., Saad, I. and Ismail, R. (2007), "Ballistic quantum transport in a nanoscale metal-oxide-semiconductor field effect transistor", Appl. Phys. Lett., 91(10), 103510. https://doi.org/10.1063/1.2780058.   DOI
27 Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B. and Le Lay, G. (2012), "Silicene: compelling experimental evidence for graphenelike two-dimensional silicon", Phys. Rev. Lett., 108(15), 155501. https://doi.org/10.1103/PhysRevLett.108.155501.   DOI
28 Wang, Z., Feng, T. and Ruan, X. (2015), "Thermal conductivity and spectral phonon properties of freestanding and supported silicene", J. Appl. Phys., 117(8), 084317. https://doi.org/10.1063/1.4913600.   DOI
29 Wong, K.L., Chuan, M.W., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 209-221. http://doi.org/10.12989/anr.2019.7.3.209.   DOI
30 Arora, V.K. (2015), Nanoelectronics: Quantum Engineering of Low-dimensional Nanoensembles, CRC Press, Florida, U.S.A. https://doi.org/10.1201/9781315222516.
31 Jooq, M.K.Q., Mir, A., Mirzakuchaki, S. and Farmani, A. (2018), "Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors", Physica E, 104 286-296. https://doi.org/10.1016/j.physe.2018.08.008.   DOI
32 Kazmierski, T.J., Zhou, D. and Al-Hashimi, B.M. (2007). "A fast, numerical circuit-level model of carbon nanotube transistor", 2007 IEEE International Symposium on Nanoscale Architectures. https://doi.org/10.1109/NANOARCH.2007.4400855.   DOI
33 Kim, R. and Lundstrom, M. (2008), Notes on Fermi-Dirac Integrals, arXiv preprint arXiv:0811.0116. http://nanohub.org/resources/5475.
34 Le Lay, G., Solonenko, D. and Vogt, P. (2018), Synthesis of Silicene, Springer. https://doi.org/10.1007/978-3-319-99964-7_5.
35 Datta, S. (1997), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9780511805776.
36 Goossens, S., Navickaite, G., Monasterio, C., Gupta, S., Piqueras, J.J., Perez, R., Burwell, G., Nikitskiy, I., Lasanta, T. and Galan, T. (2017), "Broadband image sensor array based on graphene-CMOS integration", Nature Photonics, 11(6), 366-371. https://doi.org/10.1038/nphoton.2017.75.   DOI
37 Chuan, M., Wong, K., Hamzah, A., Rusli, S., Alias, N., Lim, C. and Tan, M. (2020a), "Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties", Adv. Nano Res., Int. J., 9(2), 105-112. http://doi.org/10.12989/anr.2020.9.2.105.   DOI
38 Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020b), "2D honeycomb silicon: A review on theoretical advances for silicene field-effect transistors", Curr. Nanosci., 16(4), 595-607. https://doi.org/10.2174/1573413715666190709120019.   DOI
39 Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020c), "Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure", Physica E, 116 113731. https://doi.org/10.1016/j.physe.2019.113731.   DOI
40 Chuan, M., Wong, K., Hamzah, A., Rusli, S., Alias, N., Lim, C. and Tan, M. (2021), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor", Adv. Nano Res., Int. J., 10(1), 91-99. http://doi.org/10.12989/anr.2021.10.1.091.   DOI
41 Datta, S. (2005), Quantum transport: Atom to transistor, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9781139164313.
42 Ding, Y. and Ni, J. (2009), "Electronic structures of silicon nanoribbons", Appl. Phys. Lett., 95(8), 083115. https://doi.org/10.1063/1.3211968.   DOI
43 Ding, Y. and Wang, Y. (2013), "Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties", J. Phys. Chem. C., 117(35), 18266-18278. https://doi.org/10.1021/jp407666m.   DOI
44 Harrison, W.A. (2004), Elementary Electronic Structure: Revised, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/5432.
45 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896.   DOI
46 Gao, J., Zhang, J., Liu, H., Zhang, Q. and Zhao, J. (2013), "Structures, mobilities, electronic and magnetic properties of point defects in silicene", Nanoscale, 5(20), 9785-9792. https://doi.org/10.1039/C3NR02826G.   DOI
47 Gert, A., Nestoklon, M. and Yassievich, I. (2015), "Band structure of silicene in the tight binding approximation", J. Exp. Theo. Phys., 121(1), 115-121. https://doi.org/10.1134/S1063776115060072.   DOI
48 Gupta, A., Sakthivel, T. and Seal, S. (2015), "Recent development in 2D materials beyond graphene", Prog. Mater. Sci., 73, 44-126. https://doi.org/10.1016/j.pmatsci.2015.02.002.   DOI
49 Guzman-Verri, G.G. and Lew Yan Voon, L.C. (2007), "Electronic structure of silicon-based nanostructures", Phys. Rev. B., 76(7), 075131. https://doi.org/10.1103/PhysRevB.76.075131.   DOI
50 Huang, S., Kang, W. and Yang, L. (2013), "Electronic structure and quasiparticle bandgap of silicene structures", Appl. Phys. Lett., 102(13), 133106. https://doi.org/10.1063/1.4801309   DOI
51 IEEE (2018), International Roadmap for Devices and Systems (IRDS). https://irds.ieee.org/.
52 Ismail, R., Ahmadi, M.T. and Anwar, S. (2016), Advanced Nanoelectronics, CRC Press, Florida, U.S.A. https://doi.org/10.1201/9781315217185.
53 Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2018), "Performance analysis of one dimensional BC2N for nanoelectronics applications", Physica E, 102, 33-38. https://doi.org/10.1016/j.physe.2018.04.005.   DOI
54 Lopez-Bezanilla, A. (2014), "Substitutional doping widens silicene gap", J. Phys. Chem. C., 118(32), 18788-18792. https://doi.org/10.1021/jp5060809.   DOI