1 |
Peroni, M., Solomos, G., Pizzinato, V. and Larcher, M. (2011), "Experimental investigation of high strain-rate behaviour of glass", Appl. Mech. Mater., 82, 63-68. https://doi.org/10.4028/www.scientific.net/AMM.82.63.
DOI
|
2 |
prEN 13474-3 (2009), Glass in Building-Determination of the Strength of Glass Panes-Part 3: General Method of Calculation and Determination of Strength of Glass by Testing, European Committee for Standardization, Brussels, Belgium.
|
3 |
Quaglini, V., Cattaneo, S. and Biolzi, L. (2020), "Numerical assessment of laminated cantilevered glass plates with point fixings", Glass Struct. Eng., 5, 187-204. https://doi.org/10.1007/s40940-020-00119-5.
DOI
|
4 |
Ibrahimbegovic, A. and Mejia Nava, R.A. (2021), "Heterogeneities and material-scales providing physicallybased damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
DOI
|
5 |
Imamovic, I., Ibrahimbegovic, A. and Hajdo, E. (2019), "Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam", Couple. Syst. Mech., 8(6), 537-553. https://doi.org/10.12989/csm.2019.8.6.537.
DOI
|
6 |
Wang, X., Yang, J., Liu, Q., Zhang, Y. and Zhao, C. (2017), "A comparative study of numerical modelling techniques for the fracture of brittle materials with specific reference to glass", Eng. Struct., 152, 493-505. https://doi.org/10.1016/j.engstruct.2017.08.050.
DOI
|
7 |
Reich, S. and Sagar Vanapalli, M.R. (2018), "Hard body impact on glass panes and the fracture energy equilibrium", Procedia Struct. Integ., 13, 28-33. https://doi.org/10.1016/j.prostr.2018.12.005.
DOI
|
8 |
Schneider, J. and Schula, S. (2013), "Simulating soft body impact on glass structures", Struct. Build., 169(6), 416-431. http://doi.org/10.1680/jstbu.13.00112.
DOI
|
9 |
Brendler, J.S., Haufe, A. and Ummenhofer, T. (2004), "A detailed numerical investigation of insulated glass subjected to the standard pendulum test", Proceedings of the International Symposium on the Application of Architectural Glass, Munchen, Germany, November.
|
10 |
Van Dam, S., Pelfrene, J., De Pauw, S. and Van Paepegem, W. (2014), "Experimental study on the dynamic behaviour of glass fitted with safety window film with a small-scale drop weight set-up", Int. J. Impact Eng., 73, 101-111. https://doi.org/10.1016/j.ijimpeng.2014.06.002.
DOI
|
11 |
Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547.
DOI
|
12 |
Viviani, L., Consolaro, A., Maffeis, M. and Royer-Carfagni, G. (2021), "Engineered modelling of the softbody impact test on glazed surfaces", Eng. Struct., 226(S1), 111315. https://doi.org/10.1016/j.engstruct.2020.111315.
DOI
|
13 |
Han, T., Eliasova, M. and Sokol, Z. (2018), "Four point bending tests of double laminated glass panels", Proceedings of the 24th International Conference Engineering Mechanics 2018, Svratka, Czech Republic.
|
14 |
Timmel, M., Kolling, S., Osterrieder, P. and Du Bois, P.A. (2007), "A finite element model for impact simulation with laminated glass", Int. J. Impact Eng., 34(8), 1465-1478. https://doi.org/10.1016/j.ijimpeng.2006.07.008.
DOI
|
15 |
Alonso, J., Parra, J.A., Pacios, A. and Huerta, M.C. (2019), "Similarity index: A procedure for comparing impact time histories validated with soft impact test", Eng. Struct., 198, 109513. https://doi.org/10.1016/j.engstruct.2019.109513.
DOI
|
16 |
Carter, C.B. and Norton, M.G. (2013), Ceramic Materials, Springer-Verlag, New York, New York, USA.
|
17 |
Daryadel, S.S., Mantena, P.R., Kim, K., Stoddard, D. and Rajendran, A.M. (2016), "Dynamic response of glass under low-velocity impact and high strain-rate SHPB compression loading", J. Non-Crystal. Solid., 432(Part B), 432-439. https://doi.org/10.1016/j.jnoncrysol.2015.10.043.
DOI
|
18 |
Froling, M., Persson, K. and Austrell, P.E. (2014), "A reduced model for the design of glass structures subjected to dynamic impulse load", Eng. Struct., 80, 53-60. https://doi.org/10.1016/j.engstruct.2014.08.043.
DOI
|
19 |
Do, X.N. and Ibrahimbegovic, A. (2018), "2D continuum viscodamage-embedded discontinuity model with second order mid-point scheme", Couple. Syst. Mech., 7(6), 669-690. https://doi.org/10.12989/csm.2018.7.6.669.
DOI
|
20 |
Guidance for European Structural Design of Glass Components (2014), European Commission, Joint Research Centre, Report EUR 26439 EN, Luxembourg.
|
21 |
Molnar, G., Vigh, L.G., Stocker, G. and Dunai, L. (2012), "Finite element analysis of laminated structural glass plates with polyvinyl butyral (PVB) interlayer", Periodica Polytechnica Civil Eng., 56(1), 35-42. https://doi.org/10.3311/pp.ci.2012-1.04.
DOI
|
22 |
Orowan, E. (1949), "Fracture and strength of solids", Rep. Prog. Phys., 12(1), 185-232.
DOI
|
23 |
Osnes, K., Holmen, J.K., Hopperstad, O.S. and Borvik, T. (2019), "Fracture and fragmentation of blast-loaded laminated glass: An experimental and numerical study", Int. J. Impact Eng., 132, 103334. https://doi.org/10.1016/j.ijimpeng.2019.103334.
DOI
|
24 |
HR EN 12600:2006 (EN 12600:2002) (2006), Glass in Building-Pendulum Test-Impact Test Method and Classification for Flat Glass, Croatian Standards Institute, Zagreb, Croatia.
|
25 |
Osnes, K., Hopperstad, O.S. and Borvik, T. (2020), "Rate dependent fracture of monolithic and laminated glass: Experiments and simulations", Eng. Struct., 212, 110516. https://doi.org/10.1016/j.engstruct.2020.110516.
DOI
|
26 |
HR EN 356:2006 (EN 356:1999) (2006), Glass in Building-Security Glazing-Testing and Classification of Resistance against Manual Attack, Croatian Standards Institute, Zagreb, Croatia.
|
27 |
Griffith, A.A. (1920), "The phenomena of rupture and flow in solids", Philos. Tran., Ser. A, 221, 163-198.
|
28 |
Zhang, X. and Hao, H. (2015), "Experimental and numerical study of boundary and anchorage effect on laminated glass windows under blast loading", Eng. Struct., 90, 96-116. https://doi.org/10.1016/j.engstruct.2015.02.022.
DOI
|
29 |
Yankelevsky, D.Z. (2014), "Strength prediction of annealed glass plates-A new model", Eng. Struct., 79, 244-255. https://doi.org/10.1016/j.engstruct.2014.08.017.
DOI
|
30 |
Pacios, A., Postigo, S. and Huerta, C. (2011), "Relationship between characteristic parameters of impact test for safety glasses", Stahlbau Spezial, 80(S1), 61-66. https://doi.org/10.1002/stab.201120008.
DOI
|
31 |
Overend, M., De Gaetano, S. and Haldimann, M. (2007), "Diagnostic interpretation of glass failure", Struct. Eng. Int., 17(2), 151-158. https://doi.org/10.2749/101686607780680790.
DOI
|
32 |
Parra, J.A., Alonso, J., Pacios, A. and Huerta, M.C. (2019), "Effective energy applied to a glass plate during an impact test", Int. J. Impact Eng., 130(3-4), 11-18. https://doi.org/10.1016/j.ijimpeng.2019.03.008.
DOI
|
33 |
Pelfrene, J. (2016), "Numerical analysis of the post-fracture response of laminated glass under impact and blast loading", Ph.D. Dissertation, Ghent University, Ghent, Belgium.
|
34 |
Pelfrene, J., Kuntsche, J., Van Dam, S., Van Paepegem, W. and Schneider, J. (2016), "Critical assessment of the post-breakage performance of blast loaded laminated glazing: Experiments and simulations", Int. J. Impact Eng., 88, 61-71. https://doi.org/10.1016/j.ijimpeng.2015.09.008.
DOI
|
35 |
Pelfrene, J., Van Dam, S., Kuntsche, J. and Van Paepegem, W. (2016), "Numerical simulation of the EN 12600 pendulum test for structural glass", Proceedings of the Conference on Architectural and Structural Applications of Glass-Challenging Glass 5, Ghent, Belgium, June.
|
36 |
Zhang, X., Zou, Y., Hao, H., Li, X., Ma, G. and Liu, K. (2012), "Laboratory test on dynamic material properties of annealed float glass", Int. J. Protect. Struct., 3(4), 407-430. https://doi.org/10.1260/2041-4196.3.4.407.
DOI
|
37 |
Zhang, X., Hao, H. and Ma, G. (2013), "Laboratory test and numerical simulation of laminated glass window vulnerability to debris impact", Int. J. Impact Eng., 55, 49-62. https://doi.org/10.1016/j.ijimpeng.2013.01.002.
DOI
|
38 |
Zhang, X., Hao, H. and Wang, Z. (2015), "Experimental study of laminated glass window responses under impulsive and blast loading", Int. J. Impact Eng., 78, 1-19. https://doi.org/10.1016/j.ijimpeng.2014.11.020.
DOI
|