Browse > Article
http://dx.doi.org/10.12989/csm.2021.10.5.429

Improving performance of piezoelectric energy harvester under electrostatic actuation using cavity  

Delalat, Kourosh (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University)
Zamanian, Mehdi (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University)
Firouzi, Behnam (Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University)
Publication Information
Coupled systems mechanics / v.10, no.5, 2021 , pp. 429-451 More about this Journal
Abstract
This study aims to investigate the effect of cavity on electric energy harvesting from cantilever beam vibrations under electrostatic actuation. Electrostatic actuation is created by a layer of radioisotope materials that is placed on the opposite side of the beam emitting electrons. When the beam is charged, the electrostatic force is generated between the beam and the opposite plate and pulls the beam towards itself. After the beam strikes the radioisotope, it is electrically discharged and then released. The piezoelectric layer converts the released microbeam vibration into electricity. The equations of motion coupled with the electrical effects of the piezoelectric layer are extracted using Hamilton's principle and Gauss's law. The equations are discretized by Galerkin method. The exact mode shape of the cantilever beam with the piezoelectric layer is employed as the comparison function. By identifying the relations governing the system, the output voltage and consequently the amount of harvested electrical energy are obtained using various parameters such as thickness and position of the cavity and system electrical resistance. The results indicates that creating cavity has a significant effect on the energy harvesting.
Keywords
cavity; electrostatic; energy harvester; microcantilever; piezoelectric;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Dutoit, N.E., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integ. Ferroelec., 71, (1), 121-160. https://doi.org/10.1080/10584580590964574.   DOI
2 Erturk, A. and Inman, D.J. (2008), "Issues in mathematical modeling of piezoelectric energy harvesters", Smart Mater. Struct., 17(6), 065016.   DOI
3 Kim, N. L., Jeong, S.S., Cheon, S.K., Park, T.G. and Kim, M.H. (2013), "Generating characteristics of hollow-plate-type piezoelectric energy harvesters", J. Korean Phys. Soc., 63(12), 2310-2313. https://doi.org/10.3938/jkps.63.2310.   DOI
4 Li, W.G., He, S. and Yu, S. (2009), "Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass", IEEE Tran. Indus. Elec., 57(3), 868-876. https://doi.org/10.1109/TIE.2009.2030761.   DOI
5 Kim, C., Ko, Y., Kim, T., Yoo, C. S., Choi, B., Han, S. H., ... & Kim, N. (2018), "Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters", Smart Struct. Syst., 22(2), 133-137. https://doi.org/10.12989/sss.2018.22.2.133.   DOI
6 Deepesh, U., Li, X. and Yang, Y. (2020), "Analytical and experimental investigation of stepped piezoelectric energy harvester", Smart Struct. Syst., 26(6), 681-692. https://doi.org/10.12989/sss.2020.26.6.681.   DOI
7 Amini, Y., Heshmati, M., Fatehi, P. and Habibi, S.E. (2017), "Piezoelectric energy harvesting from vibrations of a beam subjected to multi-moving loads", Appl. Math. Model., 49, 1-16. https://doi.org/10.1016/j.apm.2017.04.043.   DOI
8 Brufau-Penella, J. and Puig-Vidal, M. (2009), "Piezoelectric energy harvesting improvement with complex conjugate impedance matching", J. Intel. Mater. Syst. Struct., 20(5), 597-608. https://doi.org/10.1177/1045389X08096051.   DOI
9 Chen, X.R., Yang, T.Q., Wang, W. and Yao, X. (2012), "Vibration energy harvesting with a clamped piezoelectric circular diaphragm", Ceram. Int., 38, S271-S274. https://doi.org/10.1016/j.ceramint.2011.04.099.   DOI
10 Dow, A.B.A., Schmid, U. and Kherani, N.P. (2011), "Analysis and modeling of a piezoelectric energy harvester stimulated by β-emitting radioisotopes", Smart Mater. Struct., 20(11), 115019.   DOI
11 Muralt, P. (2000), "Ferroelectric thin films for micro-sensors and actuators: A review", J. Micromech. Microeng., 10(2), 136.   DOI
12 Priya, S. (2007), "Advances in energy harvesting using low profile piezoelectric transducers", J. Electroceram., 19(1), 167-184. https://doi.org/10.1007/s10832-007-9043-4.   DOI
13 Pan, D. and Dai, F. (2018), "Design and analysis of a broadband vibratory energy harvester using bi-stable piezoelectric composite laminate", Energy Convers. Manage., 169, 149-160. https://doi.org/10.1016/j.enconman.2018.05.032.   DOI
14 Rami Reddy, A., Umapathy, M., Ezhilarasi, D. and Gandhi, U. (2016), "Improved energy harvesting from vibration by introducing cavity in a cantilever beam", J. Vib. Control, 22(13), 3057-3066. https://doi.org/10.1177/1077546314558498.   DOI
15 Zhang, Y. and Zhu, B. (2012), "Analysis and simulation of multi-mode piezoelectric energy harvesters", Smart Struct. Syst., 9(6), 549-563. http://doi.org/10.12989/sss.2012.9.6.549.   DOI
16 Rao, S.S. (2007), Vibration of Continuous Systems, Vol. 464, Wiley, New York.
17 Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131.   DOI
18 Wang, Z. and Xu, Y. (2007), "Vibration energy harvesting device based on air-spaced piezoelectric cantilevers", Appl. Phys. Lett., 90(26), 263512. https://doi.org/10.1063/1.2752726.   DOI
19 Mishra, K., Panda, S.K., Kumar, V. and Dewangan, H.C. (2020), "Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator", Smart Struct. Syst., 26(3), 391-401. https://doi.org/10.12989/sss.2020.26.3.391.   DOI
20 Sarker, M.R., Julai, S., Sabri, M.F.M., Said, S.M., Islam, M.M. and Tahir, M. (2019), "Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system", Sensor. Actuat. A: Phys., 300, 111634. https://doi.org/10.1016/j.sna.2019.111634.   DOI
21 Usharani, R., Uma, G., Umapathy, M. and Choi, S.B. (2017), "A new broadband energy harvester using propped cantilever beam with variable overhang", Smart Struct. Syst., 19(5), 567-576. http://doi.org/10.12989/sss.2017.19.5.567.   DOI
22 Wang, J., Zhao, G. and Zhang, H. (2009), "Optimal placement of piezoelectric curve beams in structural shape control", Smart Struct. Syst., 5(3), 241-260. http://doi.org/10.12989/sss.2009.5.3.241t.   DOI
23 Ghodsi, M., Ziaiefar, H., Mohammadzaheri, M., Omar, F. K. and Bahadur, I. (2019), "Dynamic analysis and performance optimization of permendur cantilevered energy harvester", Smart Struct. Syst., 23(5), 421-428. http://doi.org/10.12989/sss.2019.23.5.421.   DOI
24 Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(1), 025009.   DOI
25 Firouzi, B. and Zamanian, M. (2019), "The effect of capillary and intermolecular forces on instability of the electrostatically actuated microbeam with T-shaped paddle in the presence of fringing field", Appl. Math. Model., 71, 243-268. https://doi.org/10.1016/j.apm.2019.02.016.   DOI
26 Franco, V.R. and Varoto, P.S. (2017), "Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters", Mech. Syst. Signal Pr., 93, 593-609. https://doi.org/10.1016/j.ymssp.2017.02.030.   DOI
27 Zamanian, M., Rezaei, H., Hadilu, M. and Hosseini, S.A.A. (2015), "A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeam", Smart Struct. Syst., 16(5), 891-918. http://doi.org/10.12989/sss.2015.16.5.891.   DOI
28 Guan, Q.C., Ju, B., Xu, J.W., Liu, Y.B. and Feng, Z.H. (2013), "Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses", J. Intel. Mater. Syst. Struct., 24(9), 1059-1066. https://doi.org/10.1177/1045389X13476150.   DOI
29 Beer, F.P., Johnston Jr, E.R., Dewolf, J.T. and Mazurek, D.F. (2010), Mechanics of Materials, Sixth Edit Edition.
30 Mehraeen, S., Jagannathan, S. and Corzine, K.A. (2009), "Energy harvesting from vibration with alternate scavenging circuitry and tapered cantilever beam", IEEE Tran. Indus. Elec., 57(3), 820-830. https://doi.org/10.1109/TIE.2009.2037652.   DOI
31 Zamanian, M., Javadi, S., Firouzi, B. and Hosseini, S.A.A. (2018), "Modeling and analysis of power harvesting by a piezoelectric layer coated on an electrostatically actuated microcantilever", Mater. Res. Express, 5(12), 125502.   DOI
32 Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012), "Modeling and analysis of piezoaeroelastic energy harvesters", Nonlin. Dyn., 67(2), 925-939. https://doi.org/10.1007/s11071-011-0035-1.   DOI
33 Zhao, D., Gan, M., Zhang, C., Wei, J., Liu, S. and Wang, T. ( (2018), "Analysis of broadband characteristics of two degree of freedom bistable piezoelectric energy harvester", Mater. Res. Express, 5(8), 085704.   DOI
34 Sodano, H.A., Inman, D.J. and Park, G. (2004), "A review of power harvesting from vibration using piezoelectric materials", Shock Vib. Digest, 36(3), 197-206.   DOI
35 Junior, C.D.M., Erturk, A. and Inman, D.J. (2009), "An electromechanical finite element model for piezoelectric energy harvester plates", J. Sound Vib., 327(2), 9-25. https://doi.org/10.1016/j.jsv.2009.05.015.   DOI
36 Abdelkefi, A., Najar, F., Nayfeh, A.H. and Ayed, S.B. (2011), "An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations", Smart Mater. Struct., 20(11), 115007.   DOI