Browse > Article
http://dx.doi.org/10.12989/csm.2021.10.3.217

Stability of caisson-type breakwater using coupled Fluid-Porous model  

Ding, Dong (Alliance Sorbonne Universite, Universite de Technologie de Compiegne, Laboratoire Roberval Centre de Recherches Royallieu)
Ouahsine, Abdellatif (Alliance Sorbonne Universite, Universite de Technologie de Compiegne, Laboratoire Roberval Centre de Recherches Royallieu)
Huang, Zhaoyuan (Alliance Sorbonne Universite, Universite de Technologie de Compiegne, Laboratoire Roberval Centre de Recherches Royallieu)
Publication Information
Coupled systems mechanics / v.10, no.3, 2021 , pp. 217-228 More about this Journal
Abstract
Breakwaters are used for the protection of harbors and beaches against wave action. This paper focuses on the analysis of the stability of the caisson-type breakwater under Flip-through wave impacts using a coupled Fluid-Porous model. The fluid hydrodynamic is described by the Volume-averaged Reynolds-Averaged Navier-Stokes (VARANS) equation with k-ε model. The flow in the porous medium and armour layer is simulated by the extended Forchheimerlaw. The developed model is used to estimate the influence of the thickness of armour layer and angle of wave return wall. Thus, a new relation of the overtopping discharge with the thickness of armour layer and angle of wave return wall is established, which can be used to design the structure of breakwater according to the limited value of overtopping wave discharge.
Keywords
caisson-breakwater; waves impacts; CFD simulation; volume-averaged RANS; fluid-porous coupling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tran Khanh, T., Ouahsine, A., Naceur, H. and ELWassifi, K. (2013), "Assessment of ship manoeuvrability by using a coupling between a nonlinear transient manoeuvring model and mathematical programming techniques", J. Hydrodyn., 25(5), 788-804. https://doi.org/10.1016/S1001-6058(13)60426-6.   DOI
2 Martin-Medina, M., Abadie, S., Mokrani, C. and Morichon, D (2018), "Numerical simulation of flip-through impacts of variable steepness on a vertical breakwater", Appl. Ocean Res., 75, 117-131. https://doi.org/10.1016/j.apor.2018.03.013.   DOI
3 Mendez, F.J., Losada, I.J. and Losada, M.A. (2001), "Mean magnitudes induced by regular waves inpermeable submerged breakwaters", J. Waterw. Port Coast. Ocean Eng., 127(1), 7-15.   DOI
4 Ouahsine, A., Smaoui, H., Meftah, K., Sergent, P. and Sabatier, F. (2013), "Numerical study of coastal sandbar migration, by hydro-morphodynamical coupling", Environ. Fluid Mech., 13(2), 169-187. https://doi.org/10.1007/s10652-012-9252-5.   DOI
5 Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and Van der Meer, J.W. (2007), EurOtop Wave Overtopping of Sea Defences and Related Structures: Assessment Manual.
6 Sarpkaya, T. (1986), "Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers", J. Fluid Mech., 165, 61-71.   DOI
7 Du, P., Ouahsine, A. and Sergent, P. (2018), "Hydrodynamics prediction of a ship in static and dynamic states", Coupl. Syst. Mech., 7(2), 163-176. http://doi.org/10.12989/csm.2018.7.2.163.   DOI
8 Cai, S.G., Ouahsine, A., Favier, J. and Hoarau, Y. (2017), "Moving immersed boundary method", Int. J. Numer. Meth. Fluid., 85(5), 288-323. https://doi.org/10.1002/fld.4382.   DOI
9 Craik, A.D. (2004), "The origins of water wave theory", Ann. Rev. Fluid Mech., 36, 1-28. https://doi.org/10.1146/annurev.fluid.36.050802.122118.   DOI
10 Cui, F., Daskiran, C., King, T., Robinson, B. and Lee, K. (2020), "Modeling oil dispersion under breaking waves. Part I: Wave hydrodynamics", Environ. Fluid Mech., 20, 15271551. https://doi.org/10.1007/s10652-020-09753-7.   DOI
11 Bruce, T., Van Der Meer, J., Pullen, T. and Allsop, W. (2010), "Wave overtopping at vertical and steep structures", Handbook of Coastal and Ocean Engineering, 411-439.
12 Ding, D., Ouahsine, A., Xiao, W. and Du, P. (2021), "CFD/DEM coupled approach for the stability of caisson-type breakwater subjected to violent wave impact", Ocean Eng., 223, 108651. https://doi.org/10.1016/j.oceaneng.2021.108651.   DOI
13 Guedda, M. and Ouahsine, A. (2012), "Similarity solutions of MHD flows in a saturated porous medium", Eur. J. Mech.-B/Fluid., 33, 87-94. https://doi.org/10.1016/j.euromechflu.2011.12.002.   DOI
14 Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018a), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Coupl. Syst. Mech., 7(6), 649-668. http://doi.org/10.12989/csm.2018.7.6.649.   DOI
15 Hattori, M., Arami, A. and Yui, T. (2011), "Wave impact pressure on vertical walls under breaking waves of various types", Coast. Eng., 22(1), 79-114. https://doi.org/10.1016/0378-3839(94)90049-3.   DOI
16 Darbani, M., Ouahsine, A., Villon, P., Naceur, H. and Smaoui, H. (2011), "Meshless method for shallow water equations with free surface flow", Appl. Math. Comput., 217(11), 5113-5124. https://doi.org/10.1016/j.amc.2010.07.048.   DOI
17 Herbert, D.M., Allsop, N.W.H. and Owen, M.W. (1995), "Overtopping of sea walls under random waves", 24th International Conference on Coastal Engineering, 1130-1142.
18 Sorensen, J.D and Burcharth, H.F. (2000), "Reliability analysis of geotechnical failure modes for vertical wall breakwaters", Comput. Geotech., 26(3), 225-246.   DOI
19 Sidiropoulou, M.G., Moutsopoulos, K.N. and Tsihrintzis, V.A. (2007), "Determination of Forchheimer equation coecients a and b", Hydrol. Proc., 21(4), 534-554. https://doi.org/10.1002/hyp.6264.   DOI
20 Smaoui, H., Zouhri, L. and Ouahsine, A. (2008), "Flux-limiting techniques for simulation of pollutant transport in porous media: Application to groundwater management", Math. Comput. Model., 47(2), 47-59. https://doi.org/10.1016/j.mcm.2007.02.006.   DOI
21 Takahashi, H., Sassa, S., Morikawa, Y., Takano, D. and Maruyama, K. (2014), "Stability of caisson-type breakwater foundation under tsunami-induced seepage", Soil. Found., 54(4), 789-805. https://doi.org/10.1016/j.sandf.2014.07.002.   DOI
22 Lugni, C., Brocchini, M. and Faltinsen, O.M. (2011), "Wave impact loads: The role of the flip-through", Phys. Fluid., 18(12), 122101. https://doi.org/10.1063/1.2399077.   DOI
23 Higuera, P., Lara, J.L. and Losada, I.J. (2014), "Three-dimensional interaction of waves and porous coastal structures using OpenFOAM. Part I: Formulation and validation", Coast. Eng., 83, 243-258. https://doi.org/10.1016/j.coastaleng.2013.08.010.   DOI
24 Hsu, T.J., Sakakiyama, T. and Liu, P.L. (2002), "A numerical model for wave motions and turbulence flows in front of a composite breakwater", Coast. Eng., 46(1), 25-50. https://doi.org/10.1016/S0378-3839(02)00045-5.   DOI
25 Ji, S., Ouahsine, A., Smaoui, H. and Sergent, P. (2014), "3D Modeling of sediment movement by shipsgenerated wakes in confined shipping channel", Int. J. Sedim. Res., 29(1), 49-58. https://doi.org/10.1016/S1001-6279(14)60021-4.   DOI
26 Van Gent, M.R.A. (1996), "Wave interaction with permeable coastal structures", Int. J. Rock Mech. Min. Sci. Geomech. Abs., 6(33), 277A.
27 Shaheed, R., Mohammadian, A. and Gildeh, H.K. (2019), "A comparison of standard k-ε and realizable k-ω turbulence models in curved and confluent channels", Environ. Fluid Mech., 19(2), 543-568. ttps://doi.org/10.1007/s10652-018-9637-1.   DOI
28 Whitaker, S. (1996), "The Forchheimer equation: a theoretical development", Tran. Porous Media, 25(1), 27-61. https://doi.org/10.1007/BF00141261.   DOI
29 Kaidi, S., Rouainia, M. and Ouahsine, A. (2012), "Stability of breakwaters under hydrodynamic loading using a coupled DDA/FEM approach", Coast. Eng., 55, 62-70. https://doi.org/10.1016/j.oceaneng.2012.07.035.   DOI