Browse > Article
http://dx.doi.org/10.12989/csm.2018.7.1.079

Failure analysis of ribbed cross-laminated timber plates  

Lavrencic, Marko (University of Ljubljana, Faculty of Civil and Geodetic Engineering)
Brank, Bostjan (University of Ljubljana, Faculty of Civil and Geodetic Engineering)
Publication Information
Coupled systems mechanics / v.7, no.1, 2018 , pp. 79-93 More about this Journal
Abstract
The process of material failure i.e. cracks development and their propagation in an experiment related to the bending collapse of cross laminated timber plate with ribs is described. Numerical simulation of such an experiment by the nonlinear finite element method is presented. The numerical model is based on Hashin failure criteria, initially developed for unidirectional composites, and on material softening concept applied by the smeared crack approach. It is shown that such a numerical model can be used for an estimation of the limit load and the limit displacement of a cross laminated timber ribbed plate.
Keywords
cross-laminated timber (CLT); ribbed timber plate; limit load analysis; Hashin failure criteria; material softening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Coureau, J.L., Morel, S. and Dourado, N. (2013), "Cohesive zone model and quasibrittle failure of wood: A new light on the adapted specimen geometries for fracture tests", Eng. Fract. Mech., 109, 328-340.   DOI
2 Dourado, N., Morel, S., De Moura, M.F.S.F., Valentin, G. and Morais, J. (2008), "Comparison of fracture properties of two wood species through cohesive crack simulations", Compos.: Part A, 39, 415-427.   DOI
3 Dujc, J., Brank, B. and Ibrahimbegovic, A. (2013), "Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids", J. Numer. Meth. Eng., 94, 1075-1098.   DOI
4 Dujc, J., Brank, B. and Ibrahimbegovic A. (2010), "Quadrilateral finite element with embedded strong discontinuity for failure analysis of solids", Comput. Model. Eng. Sci., 69, 223-259.
5 Dujc, J., Brank, B. and Ibrahimbegovic, A. (2010), "Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling", Comput. Meth. Appl. Mech. Eng., 199, 1371-1385.   DOI
6 EN 408:2010+A1 (2012), Timber Structures-Structural Timber and Glued Laminated Timber-Determination of Some Physical and Mechanical Properties, European Committee for Standardization (CEN).
7 Fruhmann, K., Reitererz, A., Tschegg, E.K. and Stanzl-Tschegg, S.S. (2002), "Fracture characteristics of wood under mode I, mode II and mode III loading", Philosoph. Mag. A, 82, 3289-3298.   DOI
8 Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech., 47, 329-334.   DOI
9 Hashin, Z. (1981), "Fatigue failure criteria for unidirectional fiber composites", J. Appl. Mech., 48, 846-852.   DOI
10 Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics, Springer Netherlands, Dordrecht, the Netherlands.
11 Jukic, M., Brank, B. and Ibrahimbegovic, A. (2013), "Embedded discontinuity finite element formulation for failure analysis of planar reinforced concrete beams and frames", Eng. Struct., 50, 115-125.   DOI
12 Machek, L., Militz, H. and Sierra-Alvarez, R. (2001), "The use of an acoustic technique to assess wood decay in laboratory soil-bed tests", Wood Sci. Technol., 34, 467-472.   DOI
13 O NORM B 1995-1-1: Eurocode 5 (2015), Design of Timber Structures-Part 1-1: General-Common rules and Rules for Buildings-National Specifications for the Implementation of O NORM EN 1995-1-1, National Comments and National Supplements, Austrian Standards Institute.
14 O NORM EN 338:2009-10 (2009), Structural Timber-Strength Classes, Austrian Standards Institute.
15 Piculin, S., Nicklisch, F. and Brank, B. (2016), "Numerical and experimental tests on adhesive bond behaviour in timber-glass walls", J. Adhes. Adhes., 70, 204-217.   DOI
16 Qiu, L.P., Zhu, E.C. and Van De Kuilen, J.W.G. (2014), "Modeling crack propagation in wood by extended finite element method", Eur. J. Wood Prod., 72, 273-283.   DOI
17 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, Florida, U.S.A.
18 Reiterer, A., Stanzl-Tschegg, S.E. and Tschegg, E.K. (2000), "Mode I fracture and acoustic emission of softwood and hardwood", Wood Sci. Technol., 34, 417-430.   DOI
19 Schmidt, J. and Kaliske, M. (2009), "Models for numerical failure analysis of wooden structures", Eng. Struct., 31, 571-579.   DOI
20 Stanic, A. and Brank, B. (2017), "A path-following method for elasto-plastic solids and structures based on control of plastic dissipation and plastic work", Fin. Elem. Analy. Des., 123, 1-8.   DOI
21 Stanic, A., Brank, B. and Korelc, J. (2016), "On path-following methods for structural failure problems", Comput. Mech., 58, 281-306.   DOI
22 Stanic, A., Hudobivnik, B. and Brank, B. (2016), "Economic-design optimization of cross laminated timber plates with ribs", Compos. Struct., 154, 527-537.   DOI
23 Zisi, N., Aicher, S. and Dill-Langer, G. (2016), Testing of Specimen 6.1.a, Internal HCLTP Report, MPA, Stuttgart, Germany.
24 Brank, B. and Makarovic, M. (1998), "On non-linear response of polyester tanks: Comparison of experimental and numerical results", Proceedings of the NATO Advanced Research Workshop on Multilayered and Fibre-Reinforced Composites: Problems and Prospect, Kiev, Ukraine, June.
25 Abaqus (2016), Abaqus Manuals, Dassault Systemes, Providence, RI, U.S.A.
26 Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G. and Thiel, A. (2016), "Cross laminated timber (CLT): Overview and development", Eur. J. Wood Prod. 74, 331-351.   DOI
27 Brank, B. and Carrera, E. (2000), "Multilayered shell finite element with interlaminar continuous shear stresses: A refinement of the Reissner-Mindlin formulation", J. Numer. Meth. Eng., 48, 843-874.   DOI
28 Brank, B., Peric, D. and Damjanic, F.B. (1997), "On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element", J. Numer. Meth. Eng., 40, 689-726.   DOI