Browse > Article
http://dx.doi.org/10.12989/csm.2017.6.3.369

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers  

Lin, Yi-De (Institute of Applied Mechanics, National Taiwan University)
Wang, Yi-Siang (Institute of Applied Mechanics, National Taiwan University)
Chao, Sheng D. (Institute of Applied Mechanics, National Taiwan University)
Publication Information
Coupled systems mechanics / v.6, no.3, 2017 , pp. 369-376 More about this Journal
Abstract
Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.
Keywords
acrylamide dimer; ab initio calculation; density functional theory; hydrogen bonded complexes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Grabowski, S.J., Sokalski, W.A. and Leszczynski, J. (2006), "The possible covalent nature of N-H...O hydrogen bonds in formamide dimer and related systems: An ab initio study", J. Phys. Chem. A, 110(14), 4772-4779.   DOI
2 Guo, Y. and Wu, P. (2008), "FTIR spectroscoscopic study of the acrylamide states in AOT reversed micelles", J. Mol. Struct., 883-884, 31-37.   DOI
3 Helgaker, T., Klopper, W., Koch, H. and Noga, J. (1997), "Basis-set convergence of correlated calculations on water", J. Chem. Phys., 106(23), 9639-9646.   DOI
4 Jeffrey, G.A. and Saenger, W. (1991), Hydrogen Bonding in Biological Structures, Springer, New York, U.S.A.
5 Jiang, Y., Zhou, F., Wen, X., Yang, L., Zhao, G., Wang, H., Wang, H., Zhai, Y., Wu, J., Liu, K. and Chen, J. (2014), "Terahertz absorption spectroscopy of benzamide, acrylamide, caprolactam, salicylamide, and sulfanilamide in the solid state", J. Spectrosc.
6 Jonathan, N. (1961), "The infrared and raman spectra and structure of acrylamide", J. Mol. Spec., 6(2), 205-214.   DOI
7 Mardyukov, A., Sanchez-Garcia, E., Rodziewicz, P., Doltsinis, N.L. and Sander, W. (2007), "Formamide dimers: A computational and matrix isolation study", J. Phys. Chem. A, 111(42), 10552-10561.   DOI
8 Nagaraju, M. and Sastry, G.N. (2011), "Effect of alkyl substitution on H-bond strength of substituted amidealcohol complexes", J. Mol. Model., 17(7), 1801-1816.   DOI
9 Sharma, B.B., Murli, C. and Sharma, S.M. (2013), "Hydrogen bonds and polymerization in acrylamide under pressure", J. Raman Spectrosc., 44(5), 785-790.   DOI
10 Riley, K.E., Pitonak, M., Cerny, J. and Hobza, P. (2010), "On the structure and geometry of biomolecular binding motifs (hydrogen-bonding, stacking, X-H...${\pi}$): WFT and DFT calculations", J. Chem. Theor. Comput., 6(1), 66-80.   DOI
11 Singh, S., Srivastava, K. and Singh, D.K. (2014), "Hydrogen bonding patterns in different acrylamide- water clusters: Microsolvation probed by micro raman spectroscopy and DFT calculations", RSC Adv., 4, 1761-1774.   DOI
12 Wang, Y.S., Lin, Y.D. and Chao, S.D. (2016), "Hydrogen-bonding structures and energetics of acrylamide isomers, tautomers, and dimers: An ab initio study and spectral analysis", J. Chin. Chem. Soc., 63(12), 968-976.   DOI
13 Kemnitz, C.R. and Loewen, M.J. (2007), "Amide resonance correlates with a breadth of C-N rotation barriers", J. Am. Chem. Soc., 129(9), 2521-2528.   DOI
14 Boutis, T. (1992), Proton Transfer in Hydrogen Bonded Systems, Plenum, New York, U.S.A.
15 Adhikari, U. and Scheiner, S. (2013), "Preferred configurations of peptide-peptide interactions", J. Phys. Chem. A, 117(2), 489-496.   DOI
16 Ayvaz, H., Plans, M., Riedl, K.M., Schwartz, S.J. and Rodrguez-Saona, L.E. (2013), "Application of infrared microspectroscopy and chemometric analysis for screening the acrylamide content in potato chips", Anal. Meth., 5(8), 2020-2027.   DOI
17 Bartlett, R.J. (1989), "Coupled-cluster approach to molecular structure and spectra: A Step toward predictive quantum chemistry", J. Phys. Chem., 93(5), 1697-1708.   DOI
18 Boys, S.F. and Bernardi, F. (1970), "The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors", Mol. Phys., 19(4), 553-566.   DOI
19 Duarte, A.S.R., Amorim Da Costa, A.M. and Amado, A.M. (2005), "On the conformation of neat acrylamide dimers-a study by ab initio calculations and vibrational spectroscopy", J. Mol. Struct. Theochem., 723(1-3), 63-68.   DOI
20 Cato, M.A., Majumdar, D., Roszak, S. and Leszczynski, J. (2013), "Exploring relative thermodynamic stabilities of formic acid and formamide dimers-role of low-frequency hydrogen-bond vibrations", J. Chem. Theor. Comp., 9(2), 1016-1026.   DOI
21 Dunning, T.H. (1989), "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen", J. Chem. Phys., 90(2), 1007-1023.   DOI
22 Girma, K.B., Lorenz, V., Blaurock, S. and Edelmann, F.T. (2005), "Coordination chemistry of acrylamide", Coord. Chem. Rev., 249(11-12), 1283-1293.   DOI
23 Eckert-Maksic, M., Antol, I. and Vazdar, M. (2014), "Acetamide as the model of the peptide bond: Nonadiabatic photodynamical simulations in the gas phase and in the argon matrix", Comput. Theor. Chem., 1040-1041, 136-143.   DOI
24 Frey, J.A. and Leutwyler, S.J. (2006), "An ab initio benchmark study of hydrogen bonded formamide dimers", J. Phys. Chem. A, 110(45), 12512-12818.   DOI
25 Gaussian09 RevisionA.1 (2009), Expanding the Limit of Computational Chemistry, Gaussian, Inc., Wallingford CT, U.S.A.
26 Grabowski, S.J. (2006), Hydrogen Bonding-New Insights, Springer, Dordrecht, South Holland, the Netherlands.