Browse > Article
http://dx.doi.org/10.12989/amr.2021.10.3.245

Cyclic behavior and performance of a coupled-steel plate shear wall with fuse pin  

Usefvand, Mahdi (Department of Civil Engineering, Maragheh Branch, Islamic Azad University)
Maleki, Ahmad (Department of Civil Engineering, Maragheh Branch, Islamic Azad University)
Alinejad, Babak (Department of Civil Engineering, University of Maragheh)
Publication Information
Advances in materials Research / v.10, no.3, 2021 , pp. 245-265 More about this Journal
Abstract
Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, a coupled steel plate shear wall with a yielding fuse is presented. The system uses a high-ductility fuse pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and fuse pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. To verify the finite element model results, two test specimens of coupled steel plate shear walls were validated. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. The results of the C-SPSW models revealed that the fuse pin caused an increase in the ultimate capacity by approximately 19% and the energy dissipation by 20% compared to the other C-SPSW.
Keywords
Coupled steel plate shear wall (C-SPSW); energy dissipation; fuse; finite element method;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., Int. J., 35(5), 635-640. https://doi.org/https://doi.org/10.12989/scs.2020.35.5.635   DOI
2 Vatansever, C. and Berman, J.W. (2015), "Analytical investigation of thin steel plate shear walls with screwed infill plate", Steel Compos. Struct., Int. J., 19(5), 1145-1165. https://doi.org/10.12989/scs.2015.19.5.1145   DOI
3 Vatansever, C. and Yardimci, N. (2011), "Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections", Steel Compos. Struct., Int. J., 11(3), 251-271. https://doi.org/10.12989/scs.2011.11.3.251   DOI
4 Wang, M., Shi, Y., Xu, J., Yang, W. and Li, Y. (2015), "Experimental and numerical study of unstiffened steel plate shear wall structures", J. Constr. Steel Res., 112, 373-386. https://doi.org/10.1016/j.jcsr.2015.05.002   DOI
5 Dougka, G., Dimakogianni, D. and Vayas, I. (2014), "Innovative energy dissipation systems (FUSEIS 1-1) - Experimental analysis", J. Constr. Steel Res., 96, 69-80. https://doi.org/10.1016/j.jcsr.2014.01.003   DOI
6 CAN/CSA-S16-09 (2009), Rexdale, Ontario, Canada, Canadian Standards Association.
7 Chatterjee, A.K., Bhowmick, A. and Bagchi, A. (2015), "Development of a simplified equivalent braced frame model for Steel Plate Shear Wall systems", Steel Compos. Struct., Int. J., 18(3), 711-737. https://doi.org/10.12989/scs.2015.18.3.711   DOI
8 Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., Int. J., 32(3), 347-359. https://doi.org/10.12989/scs.2019.32.3.347   DOI
9 Dhar, M.M. and Bhowmick, A.K. (2016), "Seismic response estimation of steel plate shear walls using nonlinear static methods", Steel Compos. Struct., Int. J., 20(4), 777-799. https://doi.org/10.12989/scs.2016.20.4.777   DOI
10 Dimakogianni, D., Dougka, G., and Vayas, I. (2015), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS1-2)", Eng. Struct., 90, 83-95. https://doi.org/10.1016/j.engstruct.2015.01.054   DOI
11 Dubina, D., and Dinu, F. (2014), "Experimental evaluation of dual frame structures with thin-walled steel panels", Thin-Wall. Struct., 78, 57-69. https://doi.org/10.1016/j.tws.2014.01.001   DOI
12 FEMA 350 (2000), Federal Emergency Management Agency, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Washington, DC, USA.
13 FEMA P695 (2009), Quantification of building seismic performance factors, Technical Report P695, Applied Technology Council for the Federal Emergency Management Agency, Washington, DC, USA.
14 Elgaaly, M., Caccese, V. and Du, C. (1993), "Postbuckling behavior of steel-plate shear walls under cyclic loads", J. Struct. Eng., 119(2), 588-605. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(588)   DOI
15 Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021b), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33. https://doi.org/10.1016/j.jobe.2020.101821   DOI
16 Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751   DOI
17 Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866   DOI
18 Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021a), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Structures, 29, 30-47. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.009   DOI
19 Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021d), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844   DOI
20 Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021c), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., Int. J., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109   DOI
21 Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864   DOI
22 Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021e), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Structures, 33, 3066-3080. https://doi.org/10.1016/j.istruc.2021.06.046   DOI
23 Hassanipour, A., Rahnavard, R., Mokhtari, A. and Rahnavard, N. (2015), "Numerical investigation on reduced beam web section moment connections under the effect of cyclic loading", J. Multidiscip. Eng. Sci. Technol. (JMEST), 2(8), 2054-2061.
24 Hjelmstad, K.D. and Popov, E.P. (1983), "Cyclic behavior and design of link beams", J. Struct. Eng., 109(10), 2387-2403. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:10(2387)   DOI
25 IS2800 (2014), Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, Tehran, Iran.
26 Ji, X., Wang, Y., Ma, Q. and Okazaki, T. (2017), "Cyclic behavior of replaceable steel coupling beams", J. Struct. Eng., 143(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001661   DOI
27 Kharrazi, M.H. (2005), "Rational method for analysis and design of steel plate shear walls", Ph.D. Dissertation; University of British Colombia, Vancouver, Canada.
28 Li, C.H., Tsai, K.C., Chang, J.T. and Lin, C.H. (2011), "Cyclic test of a coupled steel plate shear wall substructure", Procedia Eng., 582-589. https://doi.org/10.1016/j.proeng.2011.07.073   DOI
29 Li, C.-H., Tsai, K.-C., Chang, J.-T., Lin, C.-H., Chen, J.-C., Lin, T.-H. and Chen, P.-C. (2012), "Cyclic test of a coupled steel plate shear wall substructure", Earthq. Eng. Struct. Dyn., 41(9), 1277-1299. https://doi.org/10.1002/eqe.1180   DOI
30 Lubell, A.S., Prion, H.G.L., Ventura, C.E. and Rezai, M. (2000), "Unstiffened steel plate shear wall performance under cyclic loading", J. Struct. Eng., 126(4), 453-460. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(453).   DOI
31 Ji, X., Wang, Y., Ma, Q. and Okazaki, T. (2016), "Cyclic behavior of very short steel shear links", J. Struct. Eng., 142(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001375   DOI
32 ASCE7-10 (2010), Minimum Design Loads for Buildings and Other Structures, Standards, American Society of Civil Engineers, Reston, VA, USA.
33 ABAQUS-6.10 (2010), Standard user's manual. Hibbitt, Karlsson and Sorensen, Inc.
34 Borello, D.J. and Fahnestock, L.A. (2013), "Seismic design and analysis of steel plate shear walls with coupling", J. Struct. Eng., 139(8), 1263-1273. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000576   DOI
35 Formisano, A., Mazzolani, F.M. and De Matteis, G. (2007), "Numerical analysis of slender steel shear panels for assessing design formulas", Int. J. Struct. Stab. Dyn., 7(02), 273-294. https://doi.org/10.1142/S0219455407002289   DOI
36 Okazaki, T., Arce, G., Ryu, H.C. and Engelhardt, M.D. (2005), "Experimental study of local buckling, overstrength, and fracture of links in eccentrically braced frames", J. Struct. Eng., 131(10), 1526-1535. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1526)   DOI
37 AISC (2007), Steel design guide 20, steel plate shear walls, Chicago, IL, USA.
38 AISC 341-16 (2016), AISC Seismic Provisions for Structural Steel Buildings, (ANSI/AISC 341-16), USA.
39 Ali, M.M., Osman, S.A., Husam, O.A. and Al-Zand, A.W. (2018), "Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings", Steel Compos. Struct., Int. J., 26(3), 361-373. https://doi.org/10.12989/scs.2018.26.3.361   DOI
40 ATC-24 (1992), California, USA.
41 Rahnavard, R., Hassanipour, A. and Siahpolo, N. (2015), "Analytical study on new types of reduced beam section moment connections affecting cyclic behavior", Case Stud. Struct. Eng., 3, 33-51. https://doi.org/10.1016/j.csse.2015.03.001   DOI
42 Park, H.-G., Kwack, J.-H., Jeon, S.-W., Kim, W.-K. and Choi, I.-R. (2007), "Framed Steel Plate Wall Behavior under Cyclic Lateral Loading", J. Struct. Eng., 133(3), 378-388. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(378)   DOI
43 Popov, E.P. and Engelhardt, M.D. (1988), "Seismic eccentrically braced frames", J. Constr. Steel Res., 10(C), 321-354. https://doi.org/10.1016/0143-974X(88)90034-X   DOI
44 Qin, Y., Lu, J.Y., Huang, L.C.X. and Cao, S. (2017), "Flexural behavior of beams in steel plate shear walls", Steel Compos. Struct., Int. J., 23(4), 473-481. https://doi.org/10.12989/scs.2017.23.4.473   DOI
45 Rahnavard, R., Hassanipour, A. and Mounesi, A. (2016), "Numerical study on important parameters of composite steel-concrete shear walls", J. Constr. Steel Res., 121, 441-456. https://doi.org/10.1016/j.jcsr.2016.03.017   DOI
46 Rahnavard, R., Rebelo, C., Craveiro, H.D. and Napolitano, R. (2020), "Understanding the cyclic performance of composite steel-concrete connections on steel bridges", Eng. Struct., 224, 111213. https://doi.org/10.1016/j.engstruct.2020.111213   DOI
47 Rahnavard, R., Hassanipour, A., Suleiman, M. and Mokhtari, A. (2017), "Evaluation on eccentrically braced frame with single and double shear panels", J. Build. Eng., 10, 13-25. https://doi.org/10.1016/j.jobe.2017.01.006   DOI
48 Borello, D.J. and Fahnestock, L.A. (2012), "Behavior and mechanisms of steel plate shear walls with coupling", J. Constr. Steel Res., 74, 8-16. https://doi.org/10.1016/j.jcsr.2011.12.009   DOI
49 Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145   DOI
50 Malley, J.O. and Popov, E.P. (1984), "Shear links in eccentrically braced frames", J. Struct. Eng., 110(9), 2275-2295. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2275)   DOI
51 Shekastehband, B., Azaraxsh, A.A. and Showkati, H. (2017), "Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates", Steel Compos. Struct., Int. J., 25(4), 505-521. https://doi.org/10.12989/scs.2017.25.4.505   DOI
52 Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021f), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Structures, 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041   DOI
53 Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T., and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., Int. J., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569   DOI