1 |
Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., Int. J., 35(5), 635-640. https://doi.org/https://doi.org/10.12989/scs.2020.35.5.635
DOI
|
2 |
Vatansever, C. and Berman, J.W. (2015), "Analytical investigation of thin steel plate shear walls with screwed infill plate", Steel Compos. Struct., Int. J., 19(5), 1145-1165. https://doi.org/10.12989/scs.2015.19.5.1145
DOI
|
3 |
Vatansever, C. and Yardimci, N. (2011), "Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections", Steel Compos. Struct., Int. J., 11(3), 251-271. https://doi.org/10.12989/scs.2011.11.3.251
DOI
|
4 |
Wang, M., Shi, Y., Xu, J., Yang, W. and Li, Y. (2015), "Experimental and numerical study of unstiffened steel plate shear wall structures", J. Constr. Steel Res., 112, 373-386. https://doi.org/10.1016/j.jcsr.2015.05.002
DOI
|
5 |
Dougka, G., Dimakogianni, D. and Vayas, I. (2014), "Innovative energy dissipation systems (FUSEIS 1-1) - Experimental analysis", J. Constr. Steel Res., 96, 69-80. https://doi.org/10.1016/j.jcsr.2014.01.003
DOI
|
6 |
CAN/CSA-S16-09 (2009), Rexdale, Ontario, Canada, Canadian Standards Association.
|
7 |
Chatterjee, A.K., Bhowmick, A. and Bagchi, A. (2015), "Development of a simplified equivalent braced frame model for Steel Plate Shear Wall systems", Steel Compos. Struct., Int. J., 18(3), 711-737. https://doi.org/10.12989/scs.2015.18.3.711
DOI
|
8 |
Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., Int. J., 32(3), 347-359. https://doi.org/10.12989/scs.2019.32.3.347
DOI
|
9 |
Dhar, M.M. and Bhowmick, A.K. (2016), "Seismic response estimation of steel plate shear walls using nonlinear static methods", Steel Compos. Struct., Int. J., 20(4), 777-799. https://doi.org/10.12989/scs.2016.20.4.777
DOI
|
10 |
Dimakogianni, D., Dougka, G., and Vayas, I. (2015), "Seismic behavior of frames with innovative energy dissipation systems (FUSEIS1-2)", Eng. Struct., 90, 83-95. https://doi.org/10.1016/j.engstruct.2015.01.054
DOI
|
11 |
Dubina, D., and Dinu, F. (2014), "Experimental evaluation of dual frame structures with thin-walled steel panels", Thin-Wall. Struct., 78, 57-69. https://doi.org/10.1016/j.tws.2014.01.001
DOI
|
12 |
FEMA 350 (2000), Federal Emergency Management Agency, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Washington, DC, USA.
|
13 |
FEMA P695 (2009), Quantification of building seismic performance factors, Technical Report P695, Applied Technology Council for the Federal Emergency Management Agency, Washington, DC, USA.
|
14 |
Elgaaly, M., Caccese, V. and Du, C. (1993), "Postbuckling behavior of steel-plate shear walls under cyclic loads", J. Struct. Eng., 119(2), 588-605. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(588)
DOI
|
15 |
Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021b), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33. https://doi.org/10.1016/j.jobe.2020.101821
DOI
|
16 |
Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751
DOI
|
17 |
Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866
DOI
|
18 |
Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021a), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Structures, 29, 30-47. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.009
DOI
|
19 |
Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021d), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844
DOI
|
20 |
Gorji Azandariani, M., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021c), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., Int. J., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109
DOI
|
21 |
Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864
DOI
|
22 |
Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021e), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Structures, 33, 3066-3080. https://doi.org/10.1016/j.istruc.2021.06.046
DOI
|
23 |
Hassanipour, A., Rahnavard, R., Mokhtari, A. and Rahnavard, N. (2015), "Numerical investigation on reduced beam web section moment connections under the effect of cyclic loading", J. Multidiscip. Eng. Sci. Technol. (JMEST), 2(8), 2054-2061.
|
24 |
Hjelmstad, K.D. and Popov, E.P. (1983), "Cyclic behavior and design of link beams", J. Struct. Eng., 109(10), 2387-2403. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:10(2387)
DOI
|
25 |
IS2800 (2014), Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, Tehran, Iran.
|
26 |
Ji, X., Wang, Y., Ma, Q. and Okazaki, T. (2017), "Cyclic behavior of replaceable steel coupling beams", J. Struct. Eng., 143(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001661
DOI
|
27 |
Kharrazi, M.H. (2005), "Rational method for analysis and design of steel plate shear walls", Ph.D. Dissertation; University of British Colombia, Vancouver, Canada.
|
28 |
Li, C.H., Tsai, K.C., Chang, J.T. and Lin, C.H. (2011), "Cyclic test of a coupled steel plate shear wall substructure", Procedia Eng., 582-589. https://doi.org/10.1016/j.proeng.2011.07.073
DOI
|
29 |
Li, C.-H., Tsai, K.-C., Chang, J.-T., Lin, C.-H., Chen, J.-C., Lin, T.-H. and Chen, P.-C. (2012), "Cyclic test of a coupled steel plate shear wall substructure", Earthq. Eng. Struct. Dyn., 41(9), 1277-1299. https://doi.org/10.1002/eqe.1180
DOI
|
30 |
Lubell, A.S., Prion, H.G.L., Ventura, C.E. and Rezai, M. (2000), "Unstiffened steel plate shear wall performance under cyclic loading", J. Struct. Eng., 126(4), 453-460. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(453).
DOI
|
31 |
Ji, X., Wang, Y., Ma, Q. and Okazaki, T. (2016), "Cyclic behavior of very short steel shear links", J. Struct. Eng., 142(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001375
DOI
|
32 |
ASCE7-10 (2010), Minimum Design Loads for Buildings and Other Structures, Standards, American Society of Civil Engineers, Reston, VA, USA.
|
33 |
ABAQUS-6.10 (2010), Standard user's manual. Hibbitt, Karlsson and Sorensen, Inc.
|
34 |
Borello, D.J. and Fahnestock, L.A. (2013), "Seismic design and analysis of steel plate shear walls with coupling", J. Struct. Eng., 139(8), 1263-1273. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000576
DOI
|
35 |
Formisano, A., Mazzolani, F.M. and De Matteis, G. (2007), "Numerical analysis of slender steel shear panels for assessing design formulas", Int. J. Struct. Stab. Dyn., 7(02), 273-294. https://doi.org/10.1142/S0219455407002289
DOI
|
36 |
Okazaki, T., Arce, G., Ryu, H.C. and Engelhardt, M.D. (2005), "Experimental study of local buckling, overstrength, and fracture of links in eccentrically braced frames", J. Struct. Eng., 131(10), 1526-1535. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1526)
DOI
|
37 |
AISC (2007), Steel design guide 20, steel plate shear walls, Chicago, IL, USA.
|
38 |
AISC 341-16 (2016), AISC Seismic Provisions for Structural Steel Buildings, (ANSI/AISC 341-16), USA.
|
39 |
Ali, M.M., Osman, S.A., Husam, O.A. and Al-Zand, A.W. (2018), "Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings", Steel Compos. Struct., Int. J., 26(3), 361-373. https://doi.org/10.12989/scs.2018.26.3.361
DOI
|
40 |
ATC-24 (1992), California, USA.
|
41 |
Rahnavard, R., Hassanipour, A. and Siahpolo, N. (2015), "Analytical study on new types of reduced beam section moment connections affecting cyclic behavior", Case Stud. Struct. Eng., 3, 33-51. https://doi.org/10.1016/j.csse.2015.03.001
DOI
|
42 |
Park, H.-G., Kwack, J.-H., Jeon, S.-W., Kim, W.-K. and Choi, I.-R. (2007), "Framed Steel Plate Wall Behavior under Cyclic Lateral Loading", J. Struct. Eng., 133(3), 378-388. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(378)
DOI
|
43 |
Popov, E.P. and Engelhardt, M.D. (1988), "Seismic eccentrically braced frames", J. Constr. Steel Res., 10(C), 321-354. https://doi.org/10.1016/0143-974X(88)90034-X
DOI
|
44 |
Qin, Y., Lu, J.Y., Huang, L.C.X. and Cao, S. (2017), "Flexural behavior of beams in steel plate shear walls", Steel Compos. Struct., Int. J., 23(4), 473-481. https://doi.org/10.12989/scs.2017.23.4.473
DOI
|
45 |
Rahnavard, R., Hassanipour, A. and Mounesi, A. (2016), "Numerical study on important parameters of composite steel-concrete shear walls", J. Constr. Steel Res., 121, 441-456. https://doi.org/10.1016/j.jcsr.2016.03.017
DOI
|
46 |
Rahnavard, R., Rebelo, C., Craveiro, H.D. and Napolitano, R. (2020), "Understanding the cyclic performance of composite steel-concrete connections on steel bridges", Eng. Struct., 224, 111213. https://doi.org/10.1016/j.engstruct.2020.111213
DOI
|
47 |
Rahnavard, R., Hassanipour, A., Suleiman, M. and Mokhtari, A. (2017), "Evaluation on eccentrically braced frame with single and double shear panels", J. Build. Eng., 10, 13-25. https://doi.org/10.1016/j.jobe.2017.01.006
DOI
|
48 |
Borello, D.J. and Fahnestock, L.A. (2012), "Behavior and mechanisms of steel plate shear walls with coupling", J. Constr. Steel Res., 74, 8-16. https://doi.org/10.1016/j.jcsr.2011.12.009
DOI
|
49 |
Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145
DOI
|
50 |
Malley, J.O. and Popov, E.P. (1984), "Shear links in eccentrically braced frames", J. Struct. Eng., 110(9), 2275-2295. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2275)
DOI
|
51 |
Shekastehband, B., Azaraxsh, A.A. and Showkati, H. (2017), "Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates", Steel Compos. Struct., Int. J., 25(4), 505-521. https://doi.org/10.12989/scs.2017.25.4.505
DOI
|
52 |
Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021f), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Structures, 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041
DOI
|
53 |
Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T., and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., Int. J., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569
DOI
|