Browse > Article
http://dx.doi.org/10.12989/amr.2021.10.3.195

Development of Cobalt coated MWCNTs/Polyurethane composite for microwave absorption  

Singh, Navdeep (Department of Electronics and Communication Engineering, DAV University)
Aul, Gagan D. (Department of Electronics and Communication Engineering, DAV University)
Publication Information
Advances in materials Research / v.10, no.3, 2021 , pp. 195-209 More about this Journal
Abstract
This research work describes the design and method of development of microwave absorber and was conducted for analysis of reflection loss performance with the magnetic modifications of Multi-Walled Carbon Nanotubes (MWCNTs). Cobalt coated Multi-Walled Carbon Nanotubes composites were prepared by three step methods. Composites were developed with varying weight percentage of Cobalt (II) Chloride Hexahydrate and Multi-Walled Carbon Nanotubes. The morphology, elementary analysis and absorbing properties of Cobalt coated Multi-Walled Carbon Nanotubes composites were studied by FESEM, EDX and Vector Network Analyzer. The obtained Co coated MWCNTs/PU composite demonstrated the maximum reflection loss of -21.06 dB at 12.63 GHz and the maximum absorption bandwidth of 3.7 GHz, in the frequency range of 8-13 GHz with 3 mm thickness. These microwave absorption parameters can be credited to synergistic effect of improved matched impedance and greater microwave attenuation properties of the absorber. The combined usage of dielectric loss and magnetic loss absorber design shows great diversity and can be a promising candidate for designing high performance microwave absorbing materials.
Keywords
co-precipitation method; electromagnetic; microwave absorption; Multi-Walled Carbon Nanotubes (MWCNTs); reflection loss;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saini, P., Choudhary, V., Vijayan, N. and Kotnala, R.K. (2012), "Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles", J. Phys. Chem. C, 116(24), 13403-13412. https://doi.org/10.1021/jp302131w   DOI
2 Singh, B.P., Choudhary, V., Saini, P., Pande, S., Singh, V.N. and Mathur, R.B. (2013), "Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites", J. Nanopart. Res., 15(4), 1-12. https://doi.org/10.1007/s11051-013-1554-0   DOI
3 Yusuf, J.Y., Soleimani, H., Sanusi, Y.K., Adebayo, L.L., Sikiru, S. and Wahaab, F.A. (2020), "Recent advances and prospect of cobalt based microwave absorbing materials", Ceramics Int., 46(17), 26466-26485. https://doi.org/10.1016/j.ceramint.2020.07.244   DOI
4 Song, S., Yang, H., Rao, R., Liu, H. and Zhang, A. (2010), "High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst", Appl. Catalysis A: General, 375(2), 265-271. https://doi.org/10.1016/j.apcata.2010.01.008   DOI
5 Wang, X., Zhao, Z., Qu, J., Wang, Z. and Qiu, J. (2010), "Fabrication and characterization of magnetic Fe3O4-CNT composites", J. Phys. Chem. Solids, 71(4), 673-676. https://doi.org/10.1016/j.jpcs.2009.12.063   DOI
6 Yin, Y., Liu, X., Wei, X., Li, Y., Nie, X., Yu, R. and Shui, J. (2017), "Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber", ACS Appl. Mater. Interf., 9(36), 30850-30861. https://doi.org/10.1021/acsami.7b10067   DOI
7 Zhu, X., Wang, X., Liu, K., Meng, M. and Akhtar, M.N. (2020), "Microwave absorption characteristics of carbon foam decorated with BaFe12O19 and Ni0.5Co0.5Fe2O4 magnetic composite in X-band frequency", J. Magnet. Magnet. Mater., 513, 167258. https://doi.org/10.1016/j.jmmm.2020.167258   DOI
8 Kumar, P., Narayan Maiti, U., Sikdar, A., Kumar Das, T., Kumar, A. and Sudarsan, V. (2019), "Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects", Polym. Rev., 59(4), 687-738. https://doi.org/10.1080/15583724.2019.1625058   DOI
9 Shu, R., Zhang, G., Wang, X., Gao, X., Wang, M., Gan, Y., Shi, J. and He, J. (2018), "Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers", Chem. Eng. J., 337, 242-255. https://doi.org/10.1016/j.cej.2017.12.106   DOI
10 Fan, X.J. and Xin, L.I. (2012), "Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles", New Carbon Mater., 27(2), 111-116. https://doi.org/10.1016/S1872-5805(12)60007-9   DOI
11 Ansari, A. and Akhtar, M.J. (2018), "High porous carbon black based flexible nanocomposite as efficient absorber for X-band applications", Mater. Res. Express, 5(10), 105017. https://doi.org/10.1088/2053-1591/aadb13   DOI
12 Bhardwaj, P., Kaushik, S., Gairola, P. and Gairola, S.P. (2019), "Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for suppression of electromagnetic radiation", SN Appl. Sci., 1(1), 1-12. https://doi.org/10.1007/s42452-018-0115-7   DOI
13 Deng, L. and Han, M. (2007), "Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability", Appl. Phys. Lett., 91(2), 2005-2008. https://doi.org/10.1063/1.2755875   DOI
14 Ganesh, M.G., Lavenya, K., Kirubashini, K.A., Ajeesh, G., Bhowmik, S., Epaarachchi, J.A. and Yuan, X. (2017), "Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding", Adv. Aircr. Spacecr. Sci., Int. J., 4(6) 729-744. https://doi.org/10.12989/aas.2017.4.6.729   DOI
15 Deng, J., Zhang, X., Zhao, B., Bai, Z., Wen, S., Li, S., Li, S., Yang, J. and Zhang, R. (2018), "Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO", J. Mater. Chem. C, 6(26), 7128-7140. https://doi.org/10.1039/c8tc02520g   DOI
16 Dong, C.K., Li, X., Zhang, Y., Qi, J.Y. and Yuan, Y.F. (2009), "Fe3O4 nanoparticles decorated multi-walled carbon nanotubes and their sorption properties", Chem. Res. Chinese Univ., 25(6), 936-940.
17 Feng, W., Wang, Y., Chen, J., Li, B., Guo, L., Ouyang, J., Jia, D. and Zhou, Y. (2017), "Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties", J. Mater. Chem. C, 6(1), 10-18. https://doi.org/10.1039/c7tc03784h   DOI
18 Shu, R., Wu, Y., Li, Z., Zhang, J., Wan, Z., Liu, Y. and Zheng, M. (2019a), "Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band", Compos. Sci. Technol., 184, 107839. https://doi.org/10.1016/j.compscitech.2019.107839   DOI
19 Shu, R., Li, W., Wu, Y., Zhang, J. and Zhang, G. (2019b), "Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal-organic frameworks for electromagnetic wave absorption in the X-band", Chem. Eng. J., 362, 513-524. https://doi.org/10.1016/j.cej.2019.01.090   DOI
20 Shu, R., Li, W., Wu, Y., Zhang, J., Zhang, G. and Zheng, M. (2019c), "Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties", Compos. Part B: Eng., 178, 107518. https://doi.org/10.1016/j.compositesb.2019.107518   DOI
21 Gupta, T.K., Singh, B.P., Teotia, S., Katyal, V., Dhakate, S.R. and Mathur, R.B. (2013b), "Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials", J. Polym. Res., 20(6), 32-35. https://doi.org/10.1007/s10965-013-0169-6   DOI
22 Hao, Z., Liu, Q.F. and Wang, J.B. (2010), "Coating carbon nanotubes with ferrites using an improved coprecipitation method", J. Compos. Mater., 44(3), 389-395. https://doi.org/10.1177/0021998309347576   DOI
23 Iqbal, S. and Ahmad, S. (2020), "Conducting polymer composites: An efficient EMI shielding material, Materials for Potential EMI Shielding Applications", In: Materials for Potential EMI Shielding Applications, pp. 257-266. https://doi.org/10.1016/b978-0-12-817590-3.00016-6   DOI
24 Kaur, H., Aul, G.D. and Chawla, V. (2015a), "Enhanced reflection loss performance of square based pyramidal microwave absorber using rice husk-coal", Progress Electromagnet. Res. M, 43, 165-173. https://doi.org/10.2528/PIERM15072603   DOI
25 Kaur, R., Aul, G.D. and Chawla, V. (2015b), "Improved reflection loss performance of dried banana leaves pyramidal microwave absorbers by coal for application in anechoic chambers", Progress Electromagnet. Res. M,, 43, 157-164. https://doi.org/10.2528/PIERM15072602   DOI
26 Kumar, A., Pandel, U. and Banerjee, M.K. (2017), "Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite", Adv. Mater. Res., Int. J., 6(3), 245-255. https://doi.org/10.12989/amr.2017.6.3.245   DOI
27 Tianjiao, B., Yan, Z., Xiaofeng, S. and Yuexin, D. (2011), "A study of the electromagnetic properties of Cobalt-multiwalled carbon nanotubes (Co-MWCNTs) composites", Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 176(12), 906-912. https://doi.org/10.1016/j.mseb.2011.05.016   DOI
28 Gupta, T.K., Singh, B.P., Dhakate, S.R., Singh, V.N. and Mathur, R.B. (2013a), "Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites", J. Mater. Chem. A, 1(32), 9138-9149. https://doi.org/10.1039/c3ta11611e   DOI
29 Sun, J., Wang, L., Yang, Q., Shen, Y. and Zhang, X. (2020), "Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its applications in microwave absorption coating", Progress Organic Coat., 141, 105552. https://doi.org/10.1016/j.porgcoat.2020.105552   DOI
30 Tao, Y., Yin, P., Zhang, L., Feng, X., Wang, J., Zhang, Y., Wu, W., Liu, Y., Li, S. and Qiu, Z. (2019), "One-Pot Hydrothermal Synthesis of Co3O4/MWCNTs/Graphene Composites with Enhanced Microwave Absorption in Low Frequency Band", ChemNanoMat, 5(6), 847-857. https://doi.org/10.1002/cnma.201900173   DOI
31 Verma, M., Chauhan, S.S., Dhawan, S.K. and Choudhary, V. (2017), "Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations", Compos. Part B: Eng., 120, 118-127. https://doi.org/10.1016/j.compositesb.2017.03.068   DOI
32 Shu, R., Wu, Y., Zhang, J., Wan, Z. and Li, X. (2020a), "Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption", Compos. Part B: Eng., 193, 108027. https://doi.org/10.1016/j.compositesb.2020.108027   DOI
33 Vinoy, K.J. and Jha, R.M. (1996), Radar Absorbing Material: From Theory to Design and Characterization, Springer, USA.
34 Shu, R., Wu, Y., Li, W., Zhang, J., Liu, Y., Shi, J. and Zheng, M. (2020b), "Fabrication of ferroferric oxide-carbon/reduced graphene oxide nanocomposites derived from Fe-based metal-organic frameworks for microwave absorption", Compos. Sci. Technol., 196, 108240. https://doi.org/10.1016/j.compscitech.2020.108240   DOI
35 Singh, N. and Aul, G.D. (2020), "Fabrication of cobalt filled multi-walled carbon nanotubes/polyurethane composite for microwave absorption", SN Appl. Sci., 2(12), 1-13. https://doi.org/10.1007/s42452-020-03755-2   DOI
36 Singh, B.P., Saini, P., Gupta, T., Garg, P., Kumar, G., Pande, I., Pande, S., Seth, R.K., Dhawan, S.K. and Mathur, R.B. (2011), "Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation", J. Nanopart. Res., 13(12), 7065-7074. https://doi.org/10.1007/s11051-011-0619-1   DOI
37 Wu, N., Lv, H., Liu, J., Liu, Y., Wang, S. and Liu, W. (2016), "Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses", Phys. Chem. Chem. Phys., 18(46), 31542-31550. https://doi.org/10.1039/c6cp06066h   DOI
38 Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163   DOI
39 Xu, X., Ran, F., Fan, Z., Lai, H., Cheng, Z., Lv, T., Shao, L. and Liu, Y. (2019), "Cactus-inspired bimetallic metal-organic framework-derived 1D-2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance", ACS Appl. Mater. Interf., 11(14), 13564-13573. https://doi.org/10.1021/acsami.9b00356   DOI
40 Yan, J., Huang, Y., Zhang, Z. and Liu, X. (2019), "Novel 3D microsheets contain cobalt particles and numerous interlaced carbon nanotubes for high-performance electromagnetic wave absorption", J. Alloys Compounds, 785, 1206-1214. https://doi.org/10.1016/j.jallcom.2019.01.275   DOI
41 Zhang, D., Xu, F., Lin, J., Yang, Z. and Zhang, M. (2014), "Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2-18-GHz frequency range", Carbon, 80(1), 103-111. https://doi.org/10.1016/j.carbon.2014.08.044   DOI
42 Zhao, D.L., Zhang, J.M., Li, X. and Shen, Z.M. (2010), "Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes", J. Alloys Compounds, 505(2), 712-716. https://doi.org/10.1016/j.jallcom.2010.06.122   DOI
43 Lang, J., Yan, X. and Xue, Q. (2011), "Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors", J. Power Sources, 196(18), 7841-7846. https://doi.org/10.1016/j.jpowsour.2011.04.010   DOI
44 Lin, H., Zhu, H., Guo, H. and Yu, L. (2008), "Microwave-absorbing properties of Co-filled carbon nanotubes", Mater. Res. Bull., 43(10), 2697-2702. https://doi.org/10.1016/j.materresbull.2007.10.016   DOI
45 Liu, Q., Zhang, D. and Fan, T. (2008), "Electromagnetic wave absorption properties of porous carbon/Co nanocomposites", Appl. Phys. Lett., 93(1), 013110-3. https://doi.org/10.1063/1.2957035   DOI
46 Liu, Y., Jiang, W., Li, S. and Li, F. (2009), "Electrostatic self-assembly of Fe 3 O 4 nanoparticles on carbon nanotubes", Appl. Surf. Sci., 255(18), 7999-8002. https://doi.org/10.1016/j.apsusc.2009.05.002   DOI
47 Liu, T., Xie, X., Pang, Y. and Kobayashi, S. (2016), "Co/C nanoparticles with low graphitization degree: A high performance microwave-absorbing material", J. Mater. Chem. C, 4(8), 1727-1735. https://doi.org/10.1039/c5tc03874j   DOI
48 Singh, B.P., Choudhary, V., Saini, P. and Mathur, R.B. (2012), "Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding", AIP Advances, 2(2), 022151. https://doi.org/10.1063/1.4730043   DOI
49 Lv, H., Zhang, H., Zhao, J., Ji, G. and Du, Y. (2016b), "Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures", Nano Res., 9(6), 1813-1822. https://doi.org/10.1007/s12274-016-1074-1   DOI
50 Lv, H., Guo, Y., Wu, G., Ji, G., Zhao, Y. and Xu, Z.J. (2017a), "Interface polarization strategy to solve electromagnetic wave interference issue", ACS Appl. Mater. Interf., 9(6), 5660-5668. https://doi.org/10.1021/acsami.6b16223   DOI
51 Singh, B.P., Saini, K., Choudhary, V., Teotia, S., Pande, S., Saini, P. and Mathur, R.B. (2014), "Effect of length of carbon nanotubes on electromagnetic interference shielding and mechanical properties of their reinforced epoxy composites", J. Nanopart. Res., 16(1), 2161. https://doi.org/10.1007/s11051-013-2161-9   DOI
52 Su, X., Wang, J., Zhang, X., Huo, S., Dai, W. and Zhang, B. (2020), "Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excellent microwave absorption performance", J. Alloys Compounds, 829, 154426. https://doi.org/10.1016/j.jallcom.2020.154426   DOI
53 Zheng, X., Li, Y. and Fun, X. (2020), "Design of Efficient Microwave Absorbers Based on Cobalt-Based MOF/SrFe10CoTiO19/Carbon Nanofibers Nanocomposite", J. Superconduct. Novel Magnet., 33(9). https://doi.org/10.1007/s10948-020-05499-x   DOI
54 Lv, H., Guo, Y., Yang, Z., Cheng, Y., Wang, L.P., Zhang, B., Zhao, Y., Xu, Z.J. and Ji, G. (2017b), "A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials", J. Mater. Chem. C, 5(3), 491-512. https://doi.org/10.1039/c6tc03026b   DOI
55 Panwar, R. and Lee, J.R. (2019), "Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications", Funct. Compos. Struct., 1(3), 032001. https://doi.org/10.1088/2631-6331/ab2863   DOI
56 Mathur, R.B., Chatterjee, S. and Singh, B.P. (2008), "Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties", Compos. Sci. Technol., 68(7-8), 1608-1615. https://doi.org/10.1016/j.compscitech.2008.02.020   DOI
57 Mathur, R.B., Pande, S. and Singh, B.P. (2014), "Properties of PMMA / Carbon", Polym. Nanotube Compos., 177.
58 Mathur, R.B., Pande, S., Singh, B.P. and Dhami, T.L. (2016), "Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites", Polym. Compos., 37(1), 915-924. https://doi.org/10.1002/pc   DOI
59 Qiao, J., Zhang, X., Xu, D., Kong, L., Lv, L., Yang, F., Wang, F., Liu, W. and Liu, J. (2020), "Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption", Chem. Eng. J., 380, 122591. https://doi.org/10.1016/j.cej.2019   DOI
60 Kim, J.B., Lee, S.K. and Kim, C.G. (2008), "Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band", Compos. Sci. Technol., 68(14), 2909-2916. https://doi.org/10.1016/j.compscitech.2007.10.035   DOI
61 Lv, H., Zhang, H., Ji, G. and Xu, Z.J. (2016a), "Interface strategy to achieve tunable high frequency attenuation", ACS Appl. Mater. Interf., 8(10), 6529-6538. https://doi.org/10.1021/acsami.5b12662   DOI
62 Qiao, J., Zhang, X., Liu, C., Lyu, L., Yang, Y., Wang, Z., Wu, L., Liu, W., Wang, F. and Liu, J. (2021), "Non-Magnetic Bimetallic MOF-Derived Porous Carbon-Wrapped TiO2/ZrTiO4 Composites for Efficient Electromagnetic Wave Absorption", Nano-Micro Lett., 13(1), 1-16. https://doi.org/10.1007/s40820-021-00606-6   DOI
63 Peymanfar, R., Javanshir, S., Naimi-Jamal, M.R., Cheldavi, A. and Esmkhani, M. (2019), "Preparation and characterization of MWCNT/Zn0.25Co0.75Fe2O4 nanocomposite and investigation of its microwave absorption properties at x-band frequency using silicone rubber polymeric matrix", J. Electron. Mater., 48(5), 3086-3095. https://doi.org/10.1007/s11664-019-07065-1   DOI
64 Singh, B.P., Bharadwaj, P., Choudhary, V. and Mathur, R.B. (2014), "Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites", Appl. Nanosci., 4(4), 421-428. https://doi.org/10.1007/s13204-013-0214-0   DOI
65 Shu, R., Zhang, J., Guo, C., Wu, Y., Wan, Z., Shi, J., Liu, Y. and Zheng, M. (2020c), "Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band", Chem. Eng. J., 384, 123266. https://doi.org/10.1016/j.cej.2019.123266   DOI
66 Qing, Y., Zhou, W., Luo, F. and Zhu, D. (2009), "Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings", J. Magnet. Magnet. Mater., 321(1), 25-28. https://doi.org/10.1016/j.jmmm.2008.07.011   DOI
67 Saini, P. and Choudhary, V. (2013), "Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites", J. Nanopart. Res., 15(1), 1-7. https://doi.org/10.1007/s11051-012-1415-2   DOI
68 Setua, D.K., Mordina, B., Srivastava, A.K., Roy, D. and Prasad, N.E. (2020), "Carbon nanofibers-reinforced polymer nanocomposites as efficient microwave absorber", In: Fiber-Reinforced Nanocomposites: Fundamentals and Applications, pp. 395-430. https://doi.org/10.1016/b978-0-12-819904-6.00018-9
69 Raveendran, A., Sebastian, M.T. and Raman, S. (2019), "Applications of microwave materials: a review", J. Electron. Mater., 48(5), 2601-2634. https://doi.org/10.1007/s11664-019-07049-1   DOI
70 Rosca, I.D., Watari, F., Uo, M. and Akasaka, T. (2005), "Oxidation of multiwalled carbon nanotubes by nitric acid", Carbon, 43(15), 3124-3131. https://doi.org/10.1016/j.carbon.2005.06.019   DOI
71 Saini, P., Choudhary, V., Singh, B.P., Mathur, R.B. and Dhawan, S.K. (2011), "Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0 GHz range", Synthetic Metals, 161(15-16), 1522-1526. https://doi.org/10.1016/j.synthmet.2011.04.033   DOI