Browse > Article
http://dx.doi.org/10.12989/amr.2021.10.2.115

Bending and free vibration analysis for FGM plates containing various distribution shape of porosity  

Hadji, Lazreg (Department of Mechanical Engineering, University of Tiaret)
Bernard, Fabrice (University of Rennes, INSA Rennes, Laboratory of Civil Engineering and Mechanical Engineering)
Safa, Abdelkader (Department of Civil Engineering, Ahmed Zabana University Centre)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Publication Information
Advances in materials Research / v.10, no.2, 2021 , pp. 115-135 More about this Journal
Abstract
In this paper hyperbolic shear deformation plate theory is presented for bending and the free vibration of functionally graded plates with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Four different porosity types are used for functionally graded plates. Equations of motion are derived from Hamilton's principle. In the solution of the governing equations, the Navier procedure is implemented. In the numerical examples, the effects of the porosity parameters, porosity types and geometry parameters on the bending and free vibration of the functionally graded plates are investigated. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal, shear stress and frequency.
Keywords
bending; free vibration; functionally graded materials; porosity; Hamilton's principle;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049   DOI
2 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8   DOI
3 Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023   DOI
4 Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., Int. J., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633   DOI
5 Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., Int. J., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519   DOI
6 Zenkour, A.M. (2006), "Generalised shear deformation theory for bending analysis of functionally graded plates", Appl. Mathe. Modell., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009   DOI
7 Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., Int. J., 6(3), 279-301. https://doi.org/10.12989/amr.2017.6.3.279   DOI
8 Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B: Eng., 157, 219-238. https://doi.org/10.1016/j.compositesb.2018.08.087   DOI
9 Dharan, S., Syam Prakash, V. and Savithri, S. (2010), "A higher order shear deformation model for functionally graded plates", Proceedings of International Conference on Technological Trends (ICTT2010), Trivandrum, India, November.
10 Akbas, S.D. (2017d), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupl. Syst. Mech., Int. J., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399   DOI
11 Akavci, S.S. (2010), "Two new hyperbolic shear displacement models for orthotropic laminated composite plates", Mech. Compos. Mater., 46, 215-226. https://doi.org/10.1007/s11029-010-9140-3   DOI
12 Akbas, S.D. (2017c), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579   DOI
13 Akbas, S.D. (2018b), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., Int. J., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059   DOI
14 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421   DOI
15 Akbas, S.D. (2019d), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328   DOI
16 Akbas, S.D. (2020a), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302   DOI
17 Akbas, S.D. (2020b), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput. https://doi.org/10.1007/s00366-020-01070-3   DOI
18 Al-Furjan, M.S.H., Habibi, M., won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020a), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput. https://doi.org/10.1007/s00366-020-01130-8   DOI
19 Akbas, S.D. (2017a), "Vibration and static analysis of functionally graded porous plates", J. Appl. Computat. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107   DOI
20 Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764   DOI
21 Akbas, S.D. (2017e) "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375   DOI
22 Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013   DOI
23 Akbas, S.D. (2019a), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., Int. J., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459   DOI
24 Atmane, H.A., Tounsi, A. and Bernard, F. (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x   DOI
25 Akbas, S.D. (2019b), "Hygro-thermal nonlinear analysis of a functionally graded beam", J. Appl. Computat. Mech., 5(2), 477-485. https://doi.org/10.22055/JACM.2018.26819.1360   DOI
26 Akbas, S.D. (2019c), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Computat. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448   DOI
27 Trinh, C.M., Nguyen, D.D. and Kim, S.E. (2019), "Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature", Aerosp. Sci. Technol., 87, 119-132. https://doi.org/10.1016/j.ast.2019.02.010   DOI
28 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603   DOI
29 Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019   DOI
30 Nguyen, D.D., Kim, S.E. and Nguyen, D.K. (2020), "Nonlinear buckling and post-buckling analysis of shear deformable stiffened truncated conical sandwich shells with functionally graded face sheets and a functionally graded porous core", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636220906821   DOI
31 Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. B Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020   DOI
32 Hadji, L. and Adda Bedia, E.A. (2015), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., Int. J., 21(3), 273-287. https://doi.org/10.12989/was.2015.21.3.273   DOI
33 Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Mathe. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9   DOI
34 Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., Int. J., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061   DOI
35 Daouadji, T.H. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygrothermo-mechanical loading with analytical validation", Adv. Mater. Res., Int. J., 5(1), 35-53. https://doi.org/10.12989/amr.2016.5.1.035   DOI
36 Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., Int. J., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865   DOI
37 Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, Int. J., 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411   DOI
38 Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B: Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023   DOI
39 Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First order shear deformation plate models for functionally graded materials", Compos. Struct., 83, 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004   DOI
40 Trinh, M.C., Mukhopadhyay, T. and Kim, S.E. (2020), "A semi-analytical stochastic buckling quantification of porous functionally graded plates", Aerosp. Sci. Technol., 105, 105928. https://doi.org/10.1016/j.ast.2020.105928   DOI
41 Wattanasakulponga, N. and Ungbhakornb, V. (2014), "Linear and non linear vibration analysis of elastically restrained ends FGM beams with porosities", Aero. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002   DOI