Browse > Article
http://dx.doi.org/10.12989/amr.2021.10.1.057

Forced vibration analysis of a fiber reinforced composite beam  

Akbas, S.D. (Department of Civil Engineering, Bursa Technical University)
Publication Information
Advances in materials Research / v.10, no.1, 2021 , pp. 57-66 More about this Journal
Abstract
In this study, forced vibration analysis of a fiber reinforced composite cantilever beam is investigated under a harmonic load. In the beam model, the Timoshenko beam theory is used. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the forced vibration problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of fibre orientation angles, the volume fraction and dynamic parameters on the forced vibration response of fiber reinforced composite beam are presented and discussed.
Keywords
fiber reinforced composite materials; forced vibration analysis; Timoshenko Beams; Ritz Method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fan, Y. and Wang, H. (2015), "Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments", Compos. Struct., 124, 35-43. https://doi.org/10.1016/j.compstruct.2014.12.050   DOI
2 Akbas, S.D. (2014a), "Wave propagation analysis of edge cracked circular beams under impact force", PloS one, 9(6), e100496. https://doi.org/10.1371/journal.pone.0100496   DOI
3 Akbas, S.D. (2014b), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224   DOI
4 Akbas, S.D. (2014c), "Wave propagation analysis of edge cracked beams resting on elastic foundation", Int. J. Eng. Appl. Sci., 6(1), 40-52. https://doi.org/10.24107/ijeas.251218   DOI
5 Akbas, S.D. (2015a), "Free Vibration Analysis of Edge Cracked Functionally Graded Beams Resting on Winkler-Pasternak Foundation", Int. J. Eng. Appl. Sci., 7(3), 1-15. https://doi.org/10.24107/ijeas.251252   DOI
6 Akbas, S.D. (2015b), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1), 25-37. http://dx.doi.org/10.17515/resm2015.03st0107   DOI
7 Akbas, S.D. (2018a), "Investigation on free and forced vibration of a bi-material composite beam", J. Polytechnic-Politeknik Dergisi, 21(1), 65-73. http://dx.doi.org/10.2339/politeknik.386841   DOI
8 Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1   DOI
9 Ghayesh, M.H. (2018), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technologies, 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y   DOI
10 Jena, P.C., Parhi, D.R. and Pohit, G. (2016), "Dynamic Study of Composite Cracked Beam by Changing the Angle of Bidirectional Fibres", Iran. J. Sci. Technol., Transactions A: Science, 40(1), 27-37. https://doi.org/10.1007/s40995-016-0006-y   DOI
11 Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Modal analysis of cracked, unidirectional composite beam", Compos. Part B: Eng., 28(5-6), 641-650. https://doi.org/10.1016/S1359-8368(97)82238-X   DOI
12 Mohanty, S.C., Dash, R.R. and Rout, T. (2015), "Vibration and dynamic stability of pre-twisted thick cantilever beam made of functionally graded material", Int. J. Struct. Stabil. Dyn., 15(4), 1450058. https://doi.org/10.1142/S0219455414500588   DOI
13 Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369   DOI
14 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams", Appl. Phys. A, 122(11), 949.   DOI
15 Ebrahimi, F. and Barati, M.R. (2017), "Dynamic modeling of magneto-electrically actuated compositionally graded nanosize plates lying on elastic foundation", Arab. J. Sci. Eng., 42(5), 1977-1997.   DOI
16 Pour, H.R., Vossough, H., Heydari, M.M., Beygipoor, G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061   DOI
17 Akbas, S.D. (2019c), "Longitudinal Forced Vibration Analysis of Porous A Nanorod", J. Eng. Sci. Des., 7(4), 736-743. http://dx.doi.org/10.21923/jesd.553328   DOI
18 Akbas, S.D. (2018c), "Investigation of static and vibration behaviors of a functionally graded orthotropic beam", Balikesir universitesi Fen Bilimleri Enstitusu Dergisi, 1-14. https://doi.org/10.25092/baunfbed.343227   DOI
19 Akbas, S.D. (2019a), "Forced vibration analysis of functionally graded sandwich deep beams", Coupl. Syst. Mech., Int. J., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259   DOI
20 Akbas, S.D. (2019b), "Axially Forced Vibration Analysis of Cracked a Nanorod", J. Computat. Appl. Mech., 50(1), 63-68. http://dx.doi.org/10.22059/jcamech.2019.281285.392   DOI
21 Akbas, S.D. (2021), "Forced Vibration Responses of Axially Functionally Graded Beams by using Ritz Method", J. Appl. Computat. Mech., 7(1), 109-115. http://dx.doi.org/10.22055/JACM.2020.34865.2491   DOI
22 DeValve, C. and Pitchumani, R. (2014), "Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes", Compos. Struct., 110, 289-296. https://doi.org/10.1016/j.compstruct.2013.12.007   DOI
23 Vinson, J.R. and Sierakowski, R.L. (2002), Behaviour of Structures Composed of Composite Materials, Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands. https://doi.org/10.1007/0-306-48414-5
24 Fan, Y. and Wang, H. (2017), "The effects of matrix cracks on the nonlinear vibration characteristics of shear deformable laminated beams containing carbon nanotube reinforced composite layers", Int. J. Mech. Sci., 124, 216-228. https://doi.org/10.1016/j.ijmecsci.2017.03.016   DOI
25 Waddar, S., Pitchaimani, J., Doddamani, M. and Barbero, E. (2019), "Buckling and vibration behaviour of syntactic foam core sandwich beam with natural fiber composite facings under axial compressive loads", Compos. Part B: Eng., 175, 107133. https://doi.org/10.1016/j.compositesb.2019.107133   DOI
26 Yayli, M.O. (2019), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technologies, 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4   DOI
27 Zenkour, A.M. (2016), "Torsional Dynamic Response of a Carbon Nanotube Embedded in Visco-Pasternak's Medium", Mathe. Model. Anal., 21(6), 852-868. https://doi.org/10.3846/13926292.2016.1248510   DOI
28 Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B: Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020   DOI
29 Palanivel, S. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73(3), 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002   DOI