Browse > Article
http://dx.doi.org/10.12989/amr.2021.10.1.045

Thermostructural shape memory effect observations of ductile Cu-Al-Mn smart alloy  

Canbay, Canan Aksu (Department of Physics, Firat University)
Karaduman, Oktay (Department of Physics, Firat University)
Ibrahim, Pshdar A. (Department of Physics, Firat University)
Ozkul, İskender (Department of Mechanical Engineering, Mersin University)
Publication Information
Advances in materials Research / v.10, no.1, 2021 , pp. 45-56 More about this Journal
Abstract
The Cu-Al-Mn shape memory alloy (SMA) with a new different composition was fabricated by arc melting method. The characteristic shape memory effect (SME) property of Cu-Al based SMA was revealed by performing thermostructural measurements. The differential scanning calorimetry (DSC) tests were taken to observe the reversible martensitic phase transformation peaks of the alloy as evidence of SME property of the alloy. To determine the basic thermodynamical parameters of the alloy, these endothermic and exothermic transformation peaks were analyzed by the tangent differentiation method that was performed automatically by the DSC analyzing program over a manually selected part on the DSC curve and by these analyses the characteristic martensitic transformation temperatures (working temperatures) that found below 100℃ and the enthalpy change values of the alloy were directly obtained. The other kinetic transformation parameters of the alloy - the entropy change, hysteresis, and equilibrium temperature - were also determined. The common high-temperature behavior of the Cu-Al based Heusler alloys was detected by differential thermal analysis (DTA) measurement. The XRD and metallography tests that were conducted at room temperature showed the presence of M18R and the dominant 2H martensite structures that formed in the alloy and this dual martensitic structure was also prescribed by determining the theoretical e/a ratio of the alloy. Furthermore, the microhardness tests on the alloy demonstrated the high ductility feature of the alloy. All results demonstrated that the CuAlMn alloy exhibiting a shape memory effect property can be useful in smart alloy applications.
Keywords
shape memory alloy; CuAlMn Heusler alloy; ductility; entropy; shape memory effect; martensite; DSC; DTA; XRD; optical metallography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Canbay, C.A. and Karagoz, Z. (2013), "Effects of annealing temperature on thermomechanical properties of Cu-Al-Ni shape memory alloys", Int. J. Thermophys., 34, 1325-1335. https://doi.org/10.1007/s10765-013-1486-z   DOI
2 Canbay, C.A. and Keskin, A. (2014), "Effects of vanadium and cadmium on transformation temperatures of Cu-Al-Mn shape memory alloy", J. Therm. Anal. Calorim., 118, 1407-1412. https://doi.org/10.1007/s10973-014-4034-6   DOI
3 Canbay, C.A., Genc, Z.K. and Sekerci, M. (2014a), "Thermal and structural characterization of Cu-Al-Mn-X (Ti,Ni) shape memory alloys", Appl. Phys. A, 115, 371-377. https://doi.org/10.1007/s00339-014-8383-6   DOI
4 Canbay, C.A., Karaduman, O., unlu, N., Baiz, S.A. and Ozkul, I. (2019), "Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy", Compos. Part B, 174(106940), 1-10. https://doi.org/10.1016/j.compositesb.2019.106940   DOI
5 Ci, W.Y., Abu Bakar, T.A., Hamzah, E. and Saud, S.N. (2017), "Study of X-phase formation on Cu-Al-Ni shape memory alloys with Ti Addition", J. Mech. Eng. Sci., 11(2), 2770-2779. https://doi.org/10.15282/jmes.11.2.2017.17.0251   DOI
6 Kainuma, R., Satoh, N., Liu, X.J., Ohnuma, I. and Ishida, K. (1998), "Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu-Al-Mn system", J. Alloys Compounds, 266(1-2), 191-200. https://doi.org/10.1016/S0925-8388(97)00425-8   DOI
7 Velazquez, D. and Romero, R. (2020), "Calorimetric study of spinodal decomposition in β-Cu-Al-Mn", J. Therm. Anal. Calorim., 1-7. https://doi.org/10.1007/s10973-019-09234-0   DOI
8 Xie, J., Liu, J. and Huang, H. (2015), "Structure design of high-performance Cu-based shape memory alloys", Rare Met., 34, 607-624. https://doi.org/10.1007/s12598-015-0557-7   DOI
9 Yang, S., Zhang, F., Wu, J., Lu, Y., Shi, Z., Wang, C. and Liu, X. (2017), "Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys", Mater. Des., 115, 17-25. https://doi.org/10.1016/j.matdes.2016.11.035   DOI
10 Canbay, C.A., Ozgen, S. and Genc, Z.K. (2014b), "Thermal and microstructural investigation of Cu-Al-Mn-Mg shape memory alloys". Appl. Phys. A, 117, 767-771 https://doi.org/10.1007/s00339-014-8643-5   DOI
11 Liu, J.L., Huang, H.Y. and Xie, J.X. (2016), "Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy", Int. J. Miner. Metall. Mater., 23, 1157-1166. https://doi.org/10.1007/s12613-016-1335-8   DOI
12 Karaduman, O., Canbay, C.A., unlu, N. and Ozkul, I. (2019b), "Analysis of a newly composed Cu-Al-Mn SMA showing acute SME characteristics", AIP Conference Proceedings, 2178, 030039. https://doi.org/10.1063/1.513543   DOI
13 Li, H., Wang, Q., Yin, F., Cui, C., Hao, G., Jiao, Z. and Zheng, N. (2020), "Effects of Parent Phase Aging and Nb Element on the Microstructure, Martensitic Transformation, and Damping Behaviors of a Cu-Al-Mn Shape Memory Alloy", Phys. Status Solidi A, 217, 1900923. https://doi.org/10.1002/pssa.201900923   DOI
14 Liu, X.J., Ohnuma, I., Kainuma, R. and Ishida, K. (1998), "Phase equilibria in the Cu-rich portion of the Cu- Al binary system", J. Alloys Compounds, 264(1-2), 201-208. https://doi.org/10.1016/S0925-8388(97)00235-1   DOI
15 Lu, N.H. and Chen, C.H. (2021), "Inhomogeneous martensitic transformation behavior and elastocaloric effect in a bicrystal Cu-Al-Mn shape memory alloy", Mater. Sci. Eng.: A, 800, 140386. https://doi.org/10.1016/j.msea.2020.140386   DOI
16 Oliveira, J.P., Panton, B., Zeng, Z., Omori, T., Zhou, Y., Miranda, R.M. and Fernandes, F.B. (2016), "Laser welded superelastic Cu-Al-Mn shape memory alloy wires", Mater. Des., 90, 122-128. http://dx.doi.org/10.1016/j.matdes.2015.10.125   DOI
17 Karaduman, O., Canbay, C.A., Ozkul, I., Baiz, S.A. and unlu, N. (2019a), "Production and Characterization of Ternary Heusler Shape Memory Alloy with A New Composition", J. Mater. Electron. Devices, 1(1), 16-19. Retrieved from http://www.dergi-fytronix.com/index.php/jmed/article/view/24
18 Mallik, U.S. and Sampath, V. (2008), "Influence of aluminum and manganese concentration on the shape memory characteristics of Cu-Al-Mn shape memory alloys", J. Alloys Compounds, 459(1-2), 142-147. https://doi.org/10.1016/j.jallcom.2007.04.254   DOI
19 Miyazaki, S. (1996), "Development and Characterization of Shape Memory Alloys", In: Shape Memory Alloys, International Centre for Mechanical Sciences (Courses and Lectures), Volume 351, p. 69-147, Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-4348-3_2
20 Namigata, Y., Hattori, Y., Khan, M.I., Kim, H.Y. and Miyazaki, S. (2016), "Enhancement of shape memory properties through precipitation hardening in a Ti-rich Ti-Ni-Pd high temperature shape memory alloy", Mater. Transact., 57(3), 241-249. https://doi.org/10.2320/matertrans.MB201516   DOI
21 Ahlers, M. (1995), "Phase stability of martensitic structures", J. De Phy IV, 5(C8), C8-C71-8-80. https://doi.org/10.1051/jp4:1995808   DOI
22 Oliveira, J.P., Crispim, B., Zeng, Z., Omori, T., Fernandes, F.B. and Miranda, R.M. (2019), "Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rods", J. Mater. Processing Tech., 271, 93-100. https://doi.org/10.1016/j.jmatprotec.2019.03.020   DOI
23 Ozkul, I., Kurgun, M.A., Kalay, E., Canbay, C.A. and Aldas, K. (2019), "Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields", Eur. Phys. J. Plus, 134, 585. https://doi.org/10.1140/epjp/i2019-12925-2   DOI
24 Agrawal, A. and Vajpai, S.K. (2020), "Preparation of Cu-Al-Ni shape memory alloy strips by spray deposition-hot rolling route", Mater. Sci. Technol., 36(12), 1337-1348. https://doi.org/10.1080/02670836.2020.1781354   DOI
25 Alaneme, K.K. and Okotete, E.A. (2016), "Reconciling viability and cost-effective shape memory alloy options - A review of copper and iron based shape memory metallic systems", Eng. Sci. Technol., 19(3), 1582-1592. https://doi.org/10.1016/j.jestch.2016.05.010   DOI
26 Al-Humairi, S.N.S. (2019), "Cu-based shape memory alloys: modified structures and their related properties", Book Chapter in: Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen Ltd., London, UK. https://doi.org/10.5772/intechopen.86193
27 Patterson, A.L. (1939), "The Scherrer formula for X-ray particle size determination", Phys. Rev., 56(10), 978. https://doi.org/10.1103/PhysRev.56.978   DOI
28 Prado, M.O., Decorte, P.M. and Lovey, F. (1995), "Martensitic transformation in Cu-Mn-Al alloys", Scripta Metallurgica et Materialia, 33(6), 877-883. https://doi.org/10.1016/0956-716X(95)00292-4   DOI
29 Omori, T., Koeda, N., Sutou, Y., Kainuma, R. and Ishida, K. (2007), "Superplasticity of CuAl-Mn-Ni shape memory alloy", Mater. Transact., 48(11), 2914-2918. https://doi.org/10.2320/matertrans.D-MRA2007879   DOI
30 Braga, F.D.O., Matlakhov, A.N., Matlakhova, L.A., Monteiro, S.N. and Araujo, C.J.D. (2017), "Martensitic transformation under compression of a plasma processed polycrystalline shape memory CuAlNi Alloy", Mater. Res., 20(6), 1579-1592. http://dx.doi.org/10.1590/1980-5373-MR-2016-0476   DOI
31 Sutou, Y., Omori, T., Kainuma, R. and Ishida, K. (2013), "Grain size dependence of pseudoelasticity in polycrystalline Cu-Al-Mn-based shape memory sheets", Acta Materialia, 61(10), 3842-3850. https://doi.org/10.1016/j.actamat.2013.03.022   DOI
32 Tong, H.C. and Wayman, C.M. (1974), "Characteristic temperatures and other properties of thermoelastic martensites", Acta Metall., 22, 887-896. https://doi.org/10.1016/0001-6160(74)90055-8   DOI
33 Roh, D.W., Lee, E.S. and Kim, Y.G. (1992), "Effects of ordering type and degree on monoclinic distortion of 18R-type martensite in Cu-Zn-Al alloys", Metall. Transact. A, 23(10), 2753-2760. https://doi.org/10.1007/BF02651754.   DOI
34 Saburi, T., Nenno, S., Kato, S. and Takata, K. (1976), "Configurations of martensite variants in Cu-Zn-Ga", J. Less Common Metals, 50(2), 223-236. https://doi.org/10.1016/0022-5088(76)90162-4   DOI
35 Sari, U. and Aksoy, I. (2006), "Electron microscopy study of 2H and 18R martensites in Cu-11.92wt% Al-3.78wt% Ni shape memory alloy", J. Alloys Compounds, 417(1-2), 138-142. https://doi.org/10.1016/j.jallcom.2005.09.049   DOI
36 Otsuka, K. and Wayman, C.M. (1998), Shape Memory Materials, Cambridge University Press, Cambridge, UK.
37 Shaw, J., Churchill, C. and Iadicola, M. (2008), "Tips and tricks for characterizing shape memory alloy wire: part 1-differential scanning calorimetry and basic phenomena", Experim. Techniques, 32, 55-62. https://doi.org/10.1111/j.1747-1567.2008.00410.x   DOI
38 Sluiter, M.H.F. (2007), "Some observed bcc, fcc, and hcp superstructures", Phase Transitions, 80(4-5), 299-309. https://doi.org/10.1080/01411590701228562   DOI
39 Sutou, Y., Kainuma, R. and Ishida, K. (1999), "Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys", Mater. Sci. Eng. A, 273-275, 375-337. https://doi.org/10.1016/S0921-5093(99)00301-9   DOI
40 Sutou, Y., Omori, T., Kainuma, R. and Ishida, K. (2008), "Ductile Cu-Al-Mn basedshape memory alloys: general properties and applications", Mater. Sci. Technol., 24(8), 896-901. https://doi.org/10.1179/174328408X302567   DOI
41 Titenko, A., Demchenko, L., Perekos, A., Babanli, M., Huseynov, S. and Ren, T.Z. (2020), "Deformational and magnetic effects in Cu-Al-Mn alloys", Appl. Nanosci., 10(12), 5037-5043. https://doi.org/10.1007/s13204-020-01494-9   DOI
42 Webster, P.J. (1969), "Heusler alloys", Contemporary Phys., 10(6), 559-577. https://doi.org/10.1080/00107516908204800   DOI
43 Bradley, A.J. and Rodgers, J.W. (1934), "The crystal structure of the heusler alloys", Proceedings of the royal society of london. Series A, Containing Papers of a Mathematical and Physical Character, 144(852), 340-359. http://doi.org/10.1098/rspa.1934.0053   DOI
44 Canbay, C.A. and Aydogdu, A. (2013), "Thermal analysis of Cu-14.82 wt% Al-0.4 wt% Be shape memory alloy", J. Therm. Anal. Calorim., 113, 731-737. https://doi.org/10.1007/s10973-012-2792-6   DOI