Browse > Article
http://dx.doi.org/10.12989/amr.2019.8.4.295

Experimental and numerical prediction of the weakened zone of a ceramic bonded to a metal  

Zaoui, Bouchra (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes)
Baghdadi, Mohammed (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes)
Mechab, Belaid (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes)
Serier, Boualem (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes)
Belhouari, Mohammed (Department Faculty of Technology, LMPM, Mechanical Engineering, University of Sidi Bel Abbes)
Publication Information
Advances in materials Research / v.8, no.4, 2019 , pp. 295-311 More about this Journal
Abstract
In this study, a three-dimensional Finite Element Model has been developed to estimate the size of the weakened zone in a bi-material a ceramic bonded to metal. The calculations results were compared to those obtained using Scanning Electron Microscope (SEM). In the case of elastic-plastic behaviour of the structure, it has been shown that the simulation results are coherent with the experimental findings. This indicates that Finite Element modeling allows an accurate prediction and estimation of the weakening effect of residual stresses on the bonding interface of Alumina. The obtained results show us that the three-dimensional numerical simulation used by the Finite Element Method, allows a good prediction of the weakened zone extent of a ceramic, which is bonded with a metal.
Keywords
bi-materials (ceramic/metal); damage; stress intensity factor; J integral; prediction;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 An, X.M., Zhao, Z.Y., Zhang, H.H. and He, L. (2013), "Modeling bimaterial interface cracks using the numerical manifold method", Eng. Anal. Boundary Elem., 37(2), 464-474. https://doi.org/10.1016/j.enganabound.2012.11.014   DOI
2 Besevic, M. (2012), "Experimental investigation of residual stresses in cold formed steel sections", Steel Compos. Struct., Int. J., 12(6), 465-489. https://doi.org/10.12989/scs.2012.12.6.465   DOI
3 Boutabout, B., Chama, M., Bachir, B.B., Serier, B. and Lousdad, A. (2009), "Effect of thermomechanical loads on the propagation of crack near the interface brittle/ductile", Computat. Mater. Sci., 46(4), 906-911. https://doi.org/10.1016/j.commatsci.2009.04.039   DOI
4 Cazajus, V., Seguy, S., Welemane, H. and Karama, M. (2012), "Residual stresses in a ceramic-metal composite", Appl. Mech. Mater., 146, 185-196.   DOI
5 Chama, M., Boutabout, B., Lousdad, A., Bensmain, W. and Bouiadjra, B.A.B. (2014), "Crack propagation and deviation in bi-materials under thermo-mechanical loading", Struct. Eng. Mech., Int. J., 50(4), 441-457 https://doi.org/10.12989/sem.2014.50.4.441   DOI
6 Charles, Y., Hild, F., Duval, J. and Roux, S. (2005), "Analyse d'un mode de vieillissement dans un assemblage ceramique/metal", Mecanique & Industries, 6(1), 101-115. https://doi.org/10.1051/meca:2005011   DOI
7 Datta, D., Tomar, V. and Varma, A.H. (2018), "A path independent energy integral approach for analytical fracture strength of steel-concrete structures with an account of interface effects", Eng. Fract. Mech., 204, 246-267. https://doi.org/10.1016/j.engfracmech.2018.10.011   DOI
8 Doitrand, A. and Leguillon, D. (2018), "3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum specimens under four point bending", Int. J. Solids Struct., 143(15), 175-182. https://doi.org/10.1016/j.ijsolstr.2018.03.005   DOI
9 England, A.H. (1965), "A crack between dissimilar media", J. Appl. Mech., 32, 400-402. https://doi.org/10.1115/1.3625813   DOI
10 Erdogan, F. and Biricikoglu, V. (1973), "Two bonded half planes with a crack going through the interface", Int. J. Eng. Sci., 11(7), 745-766. https://doi.org/10.1016/0020-7225(73)90004-9   DOI
11 Guipont, V. (1994), "Determinations experimentales de contraintes residuelles au sein d'assemblages ceramique-metal realises par brassage : application au couple nitrure silicium-acier doux" , These de doctorat, Ecole Centrale de Lyon.
12 Hattali, M.L. (2009), "Caracterisation et modelisation thermomecanique des assemblages Metal-Ceramique elabores par thermocompression", These de doctorat, Ecole Centrale de Lyon.
13 Hattali, M.L., Valette, S., Ropital, F., Stremsdoerfer, G., Mesrati, N. and Treheux, D. (2009a), "Study of SiC-nickel alloy bonding for high temperature applications", J. Eur. Ceramic Soc., 29(4), 813-819. https://doi.org/10.1016/j.jeurceramsoc.2008.06.035   DOI
14 Hattali, M.L., Valette, S., Ropital, F., Mesrati, N. and Treheux, D. (2009b), "Effect of thermal residual stresses on the strength for both alumina/Ni/alumina and alumina/Ni/nickel alloy biomaterials", J. Mater. Sci., 44, 3198-3210. https://doi.org/10.1007/s10853-009-3426-7   DOI
15 Itou, S. (2007), "Stress intensity factors for an interface crack between an epoxy and aluminium composite plate", Struct. Eng. Mech., Int. J., 26(1), 99-109. https://doi.org/10.12989/sem.2007.26.1.099   DOI
16 Haussonne, J.M., Carry, C., Bowen, P. and Barton, J. (2005), "Ceramique Et Verres : Principales Et Techniques D'elaboration", Lausanne : Presses polytechniques et universitaires Romandes, Paris, 6, 446.
17 Hu, X.F., Shen, Q.S., Wang, J.N., Yao, W.A. and Yang, S.T. (2017), "A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface", Appl. Mathe. Model., 50, 361-379. https://doi.org/10.1016/j.apm.2017.05.046   DOI
18 Hutchinson, J.W. and Suo, Z. (1991), "Mixed mode cracking in layered materials", Adv. Appl. Mech., 29, 63-191.   DOI
19 Hwang, I.H., Heoung, J.Ch., Hong, I.P., Yong, B.P. and Yoon, J.K. (2015), "Change of transmission characteristics of FSSs in hybrid composites due to residual stresses", Steel Compos. Struct., Int. J., 19(6), 1501-1510. https://doi.org/10.12989/scs.2015.19.6.1501   DOI
20 Hsueh, C.H. and Evans, A.G. (2006), "Residual stresses in meta/ceramic bonded strips", J. Am. Ceramic Soc., 68(5), 241-248. https://doi.org/10.1111/j.1151-2916.1985.tb15316.x   DOI
21 Jarzabek, D.M. (2018), "The impact of weak interfacial bonding strength on mechanical properties of metal matrix-ceramic reinforced composites", Compos. Struct., 201, 352-362. https://doi.org/10.1016/j.compstruct.2018.06.071   DOI
22 Jarzabek, D.M., Chmielewski, M., Dulnik, J. and Strojny-Nedza, A. (2016), "The influence of the particle size on the adhesion between ceramic particles and metal matrix in MMC composites", J. Mater. Eng. Perform., 25(8), 3139-3145. https://doi.org/10.1007/s11665-016-2107-3   DOI
23 Rice, J.R. (1988), "Elastic fracture mechanics concepts for interfacial cracks", J. Appl. Mech., 55(1), 98-103. https://doi.org/10.1115/1.3173668   DOI
24 Karlson & Sorensen (2007), ABAQUS Standard Version 6.9 User's manual, Inc., Hibbitt.
25 Li, F.Z., Shih, C.F. and Needleman, A. (1985), "A comparaison of methods for calculating energy release rate", Eng. Fract. Mech., 21(2), 405-421. https://doi.org/10.1016/0013-7944(85)90029-3   DOI
26 Liu, Z., Chen, X., Yu, D. and Wang, X. (2017), "Analysis of semi-elliptical surface cracks in the interface of bimaterial plates under tension and bending", Theor. Appl. Fract. Mech., 93, 155-169. https://doi.org/10.1016/j.tafmec.2017.07.019   DOI
27 Ma, L., He, R., Zhang, J. and Shaw, B. (2013), "A simple model for the study of the tolerance of interfacial crack under thermal load", Acta Mech., 224(7), 1571-1577. https://doi.org/10.1007/s00707-013-0820-7   DOI
28 Ouinas, D., Bouiadjra, B.B., Serier, B. and Vin, J. (2008), "Influence of bimaterial interface on kinking behaviour of a crack growth emanating from notch", Computat. Mater. Sci., 41(4), 508-514. https://doi.org/10.1016/j.commatsci.2007.05.010   DOI
29 Serier, B., Bouiadjra, B.B., Belhouari, M. and Treheux, D. (2011), "Experimental analysis of the strength of silver-alumina junction elaborated at solid state bonding", Mater. Des., 32(7), 3750-3755. https://doi.org/10.1016/j.matdes.2011.03.047   DOI
30 Shih, C.F., Moran, B. and Nakamura, T. (1986), "Enargy release rate along a three dimensional crack front in a thermally stressed body", Int. J. Fract., 30(2), 79-102. https://doi.org/10.1007/BF00034019   DOI
31 Zhang, H. and Qiao, P. (2017), "An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading", Eng. Fract. Mech., 189, 81-97. https://doi.org/10.1016/j.engfracmech.2017.09.023   DOI
32 Sih, G.C. and Rice, J.R. (1965), "Discussion of the bending of plates of dissimilar materials with cracks", J. Appl. Mech., 32(2), 464-466.   DOI
33 Wu, J. and Lee, C.C. (2016), "The growth and tensile deformation behavior of the silver solid solution phase with zinc", Mater. Sci. Eng.: A ,668, 160-165. https://doi.org/10.1016/j.msea.2016.05.061   DOI
34 Liang, K.M., Orange, G. and Fantozzi, G. (1990), "Evaluation by indentation of fracture toughness of ceramic materials", J. Mater. Sci., 25(1), 207-214. https://doi.org/10.1007/BF00544209   DOI
35 Xu, C., Qin, T., Yuan, L. and Noda, N.A. (2008), "Variations of the stress intensity factors for a planar crack parallel to a bimaterial interface", Struct. Eng. Mech., Int. J., 30(3), 317-330. https://doi.org/10.12989/sem.2008.30.3.317   DOI