Browse > Article
http://dx.doi.org/10.12989/amr.2013.2.2.099

A new low dielectric constant barium titanate - poly (methyl methacrylate) nanocomposite films  

Upadhyay, Ravindra H. (Department of Physics, Institute of Chemical Technology)
Deshmukh, Rajendra R. (Department of Physics, Institute of Chemical Technology)
Publication Information
Advances in materials Research / v.2, no.2, 2013 , pp. 99-109 More about this Journal
Abstract
In the present investigation, nanocomposite films with poly(methyl methacrylate) (PMMA) as a polymer matrix and barium titanate as a filler were prepared by solution casting method. Barium titanate nano particles were prepared using Ti(IV) triethanolaminato isopropoxide and hydrated barium hydroxide as precursors and tetra methyl ammonium hydroxide (TMAH) as a base. The nanocomposite films were characterized using XRD, FTIR, SEM and dielectric spectroscopy techniques. Dielectric measurements were performed in the frequency range 100 Hz-10 MHz. Dielectric constant of nanocomposites were found to depend on the frequency, the temperature and the filler fraction. Dissipation factors were also influenced by the frequency and the temperature but not much influenced by the filler fractions. The 10 wt% of BT-PMMA nanocomposite had the lowest dielectric constant of 3.58 and dielectric loss tangent of 0.024 at 1MHz and $25^{\circ}C$. The dielectric mixing model of Modified Lichtenecker showed the close fit to the experimental data.
Keywords
BT-PMMA nanocomposite; XRD; SEM; FTIR; dielectric constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Singh, P.K. and Chandra, A. (2003), "Role of the dielectric constant of ferroelectric ceramic in enhancing the ionic conductivity of polymer electrolyte composite", J. Phys. D. Appl. Phys., 36, L93-L96.   DOI   ScienceOn
2 Singha, S. and Thomas, M.J. (2008a), "Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz", IEEE T. Dielect. El. In., 15(1), 2-11.   DOI
3 Singha, S. and Thomas, M.J. (2008b), "Dielectric properties of epoxy nanocomposites", IEEE T. Dielect. El. In., 15(1), 12-23.   DOI   ScienceOn
4 Skinner, D.P., Newnham, R.E. and Cross, L.E. (1978), ''Flexible composite transducers", Mater. Res. Bull., 13(6), 599-607.   DOI   ScienceOn
5 Tomar, A.K., Mahendia, S. and Kumar, S. (2011), "Structural characterization of PMMA blended with chemically synthesized PAni", Adv. Appl. Sci. Res., 2(3), 327-333.
6 Popielarz, R., Chiang, C.K., Nozaki, R. and Obrzut, J. (2001), "Dielectric properties of polymer/ferroelectric ceramic composites from 100 Hz to 10 GHz", Macromolecules, 34(17), 5910-5915.   DOI   ScienceOn
7 George, S., Anjana, P.S., Sebastian, M.T., Krupka, J., Uma, S. and Philip, J. (2010), "Dielectric, mechanical and thermal properties of low-permittivity polymer-ceramic composites for microelectronic applications", Int. J. Appl. Ceram. Tec., 7(4), 461-474.
8 Sebastian, M.T., Jantunen, H. (2010), "Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review", Int. J. Appl. Ceram. Tec., 7(4) 415-434.
9 Bai, Y., Cheng, Z.Y., Bharti, V., Xu, H.S. and Zhang, Q.M. (2000), "High dielectric-constant ceramicpowder polymer composites", Appl. Phys. Lett., 76(25), 3804-3806.   DOI   ScienceOn
10 Gensler, R., Groppel, P., Muhrer, V. and Muller, N. (2002), "Applications of nanoparticles in polymers for electronic and electrical engineering", Part. Part. Syst. Char., 19, 293-299.   DOI
11 Gross, S., Camozzo, D., Di Noto, V., Armelao, L. and Tondello, E. (2007), "PMMA: a key macromolecular component for dielectric low-k hybrid inorganic-organic polymer films", Eur. Polym. J., 43(3), 673-696.   DOI   ScienceOn
12 Haris, M.R.H.M., Kathiresan, S. and Mohan S. (2010), "FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate", Der Pharma Chemica, 2(4), 316-323.
13 Htoo, M.S. (1989), Microelectronic Polymers. Marcel Dekker Inc.(publisher), NY.
14 Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J., Sternstein, S.S. and Buehler, M.J. (2010), "Current issues in research on structure-property relationships in polymer nanocomposites", Polymer, 51(15), 3321-3343.   DOI   ScienceOn
15 Ahmad, S., Ahmad, S. and Agnihotry, S.A. (2007), "Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites", B. Mater. Sci., 30(1), 31-35.   DOI
16 Ajayan, P.M., Schadler, L.S. and Braun, P.V. (2003), Nanocomposite science and technology, Wiley-VCH, (Ed.Weinheim).
17 Messersmith, P.B. and Giannelis, E.P. (1994), "Synthesis and characterization of layered silicate-epoxy nanocomposites", Chem. Mater., 6(10), 1719-1725.   DOI   ScienceOn
18 Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A. and Jasiuk, I. (2005), "Experimental trends in polymer nanocomposites-a review", Mat. Sci. Eng. A - Struct., 393, 1-11.   DOI   ScienceOn
19 Kobayashi, Y., Kurosawa, A., Nagao, D. and Konno, M. (2009), "Fabrication of barium titanate nanoparticles- polymethylmethacrylate composite films and their dielectric properties", Polym. Eng. Sci., 49(6), 1069-1075.   DOI   ScienceOn
20 Mark, H.F. (1985), Encyclopedia of polymer science and technology, Wiley, NY.
21 Newnham, R.E., Skinner, D.P. and Cross, L.E. (1978), ''Connectivity and piezoelectric-pyroelectric composites'', Mater. Res. Bull., 13(6), 525-536.   DOI   ScienceOn
22 Paul, D.R. and Robeson, L.M. (2008), "Polymer nanotechnology: nanocomposites", Polymer, 49, 3187-3204.   DOI   ScienceOn
23 Bamfor, C.H. and Tipper, C.F H. (1975), Degradation of polymers. Elsevier, Amsterdam.
24 Setter, N. and Waser, R. (2000), "Electroceramic materials", Acta Mater., 48(1), 151-178.   DOI   ScienceOn
25 Upadhyay, R.H., Argekar, A.P. and Deshmukh, R.R. (2011), "Synthesis and characterization of barium titanate nanoparticles by sol-precipitation method using Ti(IV) triethanolaminato isopropoxide and barium hydroxide", BVDU Sci. Res. J., 8(2), 136-141.
26 Kobayashi, Y., Kosuge, A., Tanase, T., Nagao, D. and Konno, M. (2005), "Fabrication of high capacitance ceramic-polymer nano-composite films", Mater. Forum, 29, 268-273.